Magnetic fields surrounding LkHα 101

taken by the JCMT BISTRO survey

Nguyen Bich Ngoc on behalf of the BISTRO team

Vietnam National Space Center

Supervisors: Dr. Pham Ngoc Diep (VNSC, Vietnam)
Dr. Thiem Hoang (KASI, Korea)
LkHα 101 Region

Highest star-formation efficiency in Auriga

33 candidate protostars with an only early-B star

Why is the star-formation efficiency low in Auriga?

Colored points: YSOs

LkHα 101

Auriga–California cloud

Broekhoven-Fiene+ 2018
Grain Alignment

FIR/Sub-millimeter Dust thermal emission

B-field

Polarization

E.g. Lazarian & Hoang 2007
B-field morphology

Central region: the field lines are perpendicular to each other running north-south and east-west

Dust lane: the B-fields has the tendency to follow the filamentary structure

Map of the B-field orientation (line segments) overlaid on the intensity map. The contours ~ 15 and 250 mJy/beam
Magnetic field strength: Davis, Chandrasekhar & Fermi method

- $n(H_2)$: volume density
- ΔV: velocity dispersion
- σ_θ: polarization angle dispersion
 - Unsharp masking
 - Structure function

$$B_{\text{POS}} \approx 9.3 \sqrt{n(H_2)} \frac{\Delta V}{\sigma_\theta}$$

~ gas density ~ Alfven velocity

(Crutcher 2004)
n(H₂): volume density
\[N(H_2) \text{ Herschel} \]

ΔV: velocity dispersion
\[\text{CO}(3-2) \text{ HARP/JCMT} \]

aHerschel column density map

JCMT/HARP CO(3–2) integrated spectra
Polarization angle dispersion: Unsharp masking method \((\text{Pattle+2017})\)

\[
\Delta \theta = \theta_{\text{meas}} - \langle \theta \rangle \rightarrow \text{angle dispersion } \sigma_\theta
\]
Polarization angle dispersion: Structure function method (Hildebrand+2009)

\[<\Delta \theta^2(l)> \approx b^2 + m^2 l^2 \]
\[\sigma_{\theta}^2 = b^2 / 2 \]

Central region
\[\sigma_{\theta} = 13.7^\circ \pm 4.2^\circ \]

Dust lane
\[\sigma_{\theta} = 15.9^\circ \pm 4.4^\circ \]

Dispersion of polarization angles of all pairs of pixels having a distance \(l \) (arcsec)
Mass-to-flux ratio

$$\lambda = 7.6 \times 10^{-21} \frac{N(H_2)}{B_{pos}}$$ Crutcher 2004

Regions are **subcritical**

=> the fields are strong enough to resist gravitational collapse

=> support the **low star forming efficiency** found in Auriga-California

<table>
<thead>
<tr>
<th></th>
<th>Central region</th>
<th>Dust lane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsharp Masking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B_{POS} (\mu G)$</td>
<td>91 ± 32</td>
<td>132 ± 27</td>
</tr>
<tr>
<td>λ</td>
<td>0.27 ± 0.15</td>
<td>0.28 ± 0.12</td>
</tr>
<tr>
<td>Structure Function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B_{POS} (\mu G)$</td>
<td>92 ± 42</td>
<td>144 ± 36</td>
</tr>
<tr>
<td>λ</td>
<td>0.27 ± 0.16</td>
<td>0.32 ± 0.15</td>
</tr>
</tbody>
</table>

λ: smallest in BISTRO
Polarization hole

Segment length $\sim P(\%)$

Causes (?)

- B-field tangling
- Or/and
- Radiative Torque Disruption (RATD)

$P \propto I^\alpha$

$\alpha = 0.82 \pm 0.03$

Distance from the B star
RAdiative Torque Alignment (RATA) vs RAdiative Torque Disruption (RATD)

RATA prediction:
P (%) increases with increasing T_{dust}

RATD prediction:
P (%) increases and then decreases with increasing T_{dust}

E.g. Lazarian & Hoang 2007

Radiation strength \sim Dust temperature (T_{dust})

Hoang, Tram + 2019
LkHα 101: Central region

Input parameters for the model

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dust</td>
<td></td>
</tr>
<tr>
<td>S_{max}</td>
<td>10^7 erg cm$^{-3}$</td>
</tr>
<tr>
<td>Axial ratio</td>
<td>0.333</td>
</tr>
<tr>
<td>Volume density of dust grains, ρ</td>
<td>3 g cm$^{-3}$</td>
</tr>
<tr>
<td>a_{min}</td>
<td>10 Å0</td>
</tr>
<tr>
<td>a_{max}</td>
<td>1 μm</td>
</tr>
<tr>
<td>Size distribution power index, β</td>
<td>-3.5 or -4</td>
</tr>
<tr>
<td>Gas</td>
<td></td>
</tr>
<tr>
<td>T_{gas}</td>
<td>20 K</td>
</tr>
<tr>
<td>n_{H}</td>
<td>1.22×10^4 cm$^{-3}$</td>
</tr>
<tr>
<td>Ambiance</td>
<td></td>
</tr>
<tr>
<td>Mean wavelength, λ</td>
<td>0.45 μm</td>
</tr>
<tr>
<td>Anisotropy degree of radiation field, γ</td>
<td>1</td>
</tr>
</tbody>
</table>

Lee+ 2020

P(%) vs. T_{dust} (K) RAT predictions

RAT Alignment

RAT Disruption
JCMT proposal accepted two more fields: explore the criticality of the region.
Conclusions

- We performed the first high resolution measurement of magnetic field surrounding the LkHα-101 region. The measured field strength is ~ 100 μG.
- Mass-to-magnetic-flux-ratio $\lambda \approx 0.3$ supports for the low star forming efficiency of Auriga-California (LkHα-101 is the densest region of Auriga).
- The polarization fraction decreasing with increasing proximity to the only B star of the region (polarization hole) can be explained by the joint effect of RAT-A and RAT-D or the field tangling.
- A 22A proposal to observe two more fields in Auriga with JCMT/POL-2 is accepted, it will be interesting to study more about the B-fields, criticality, and dust physics in the region.

Thank you for your attention!