NESS – The Nearby Evolved Stars Survey:
CO observations, mass-loss rates, and dust/gas ratios

Sofia Wallström
FWO, KU Leuven

In collaboration with P. Scicluna, F. Kemper (ESO); J. Wouterloot (EAO);
S. Srinivasan (UNAM); M. Jeste, K. Menten (MPIfR); A. Trejo (ASIAA);
I. McDonald (U. Manchester); and the NESS collaboration
NESS – The Nearby Evolved Stars Survey

- Largest volume-limited and statistically representative survey of AGB stars in the Solar neighbourhood
 - ~ 850 sources within 3 kpc
 - “Wedding-cake” survey in tiers based on distance and dust-production rate (DPR)
 - Observations of CO and submm continuum
 - Open Science philosophy: aim to be fully reproducible and open source

http://evolvedstars.space/
The NESS sample

Tier 0
Tier 1
Tier 2
Tier 3
Tier 4

Outlined points = mapping sample
NESS observations

• Successful proposals
 • ~1400 hrs JCMT – continuum, CO (2–1), (3–2)
 • ~200 hrs APEX – CO (2–1), (3–2)
 • ~450 hrs Nobeyama 45m – CO (1-0)
 • ~80 hrs IRAM 30m
 • ~100 hrs ALMA/ACA – higher resolution maps

• Lots of archival data
 • JCMT archival data can be incorporated automatically through pipeline reduction at CADC
 • Archival data from other sources generally requires manual reduction

• Current heterodyne reduction: JCMT RXA3 and HARP data as of July 2021, initial APEX sample of sources out to 2 kpc with Dec < -30°
JCMT data reduction pipeline

• Python script calling Starlink functions, will be made available with paper publication
• Run on CADC servers, easy download of JCMT data
• For each source:
 • Find all matching archival JCMT data of the source, searching by coordinates and frequency range
 • Correct raw files for sideband offset and convert TA* -> Tmb
 • Reduce the data with ORACDR in batches grouped by receiver and backend
 • Output a FITS image and spectrum from the reference pixel
 • Fit all observed CO & 13CO lines together with a soft parabola function, using MCMC to estimate errors on each parameter
 • Output a table of values including total observing time, rms, and line fit parameters: peak, central velocity, width, and beta (shape factor)
Detection statistics – CO in JCMT and APEX

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>JCMT</th>
<th>APEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[CO (2-1); CO (3-2)]</td>
<td>540 [322; 437]</td>
<td>435 [250; 354]</td>
<td>105 [72; 83]</td>
</tr>
<tr>
<td>CO (2-1) detections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>211 (66%)</td>
<td>173 (69%)</td>
<td>38 (53%)</td>
</tr>
<tr>
<td>13CO (2-1) detections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>72 (29%)</td>
<td>52 (29%)</td>
<td>20 (28%)</td>
</tr>
<tr>
<td>CO (3-2) detections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>215 (49%)</td>
<td>157 (44%)</td>
<td>58 (70%)</td>
</tr>
<tr>
<td>13CO (3-2) detections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>53 (15%)</td>
<td>27 (10%)</td>
<td>26 (31%)</td>
</tr>
</tbody>
</table>

Note: 13CO only observed towards sources with sufficiently strong 12CO detection
[Preliminary results] – Empirical mass-loss rates vs DPR

- ~ 430 CO detections so far
- Empirical MLR formula from Ramstedt et al. 2008
 - Based on modeling of 10 sources
 - Valid for $10^{-7} - 10^{-5} \, M_\odot \, yr^{-1}$
- Mostly consistent with canonical gas-to-dust ratio (within large uncertainties)
- More outliers at very low and high mass-loss

Wallström et al., in prep
[Preliminary results] — Gas-to-dust ratios

Wallström et al., in prep
[Preliminary results] – Gas-to-dust ratios

Range: 0.34 to 16871.53
Mean: 452.52 +/- 49.18
Median: 259.41
[Preliminary results] – MLR vs velocity by tiers

Wallström et al., in prep
[Preliminary results] – Comparison with literature samples

Wallström et al., in prep
[Preliminary results] – Comparison with literature samples

- Samples from
 - Loup et al. 1993
 - Schöier & Olofsson 2001
 - Olofsson et al. 2002
 - Gonzalez-Delgado et al. 2003
 - Ramstedt et al. 2009
 - De Beck et al. 2010
 - Total = 616 data points

- Median values of both samples similar:
 - NESS MLR = 1.3e-6, $v_{exp} = 12$
 - Lit. MLR = 2.0e-6, $v_{exp} = 12.5$
[Preliminary results] – Comparison with literature samples

- Directly comparing MLR and v_{exp} values for sources common to both samples
 - Divided mean NESS value by mean literature value

<table>
<thead>
<tr>
<th>Number of sources</th>
<th>164</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean MLR (NESS/literature)</td>
<td>1.17 ± 0.08</td>
</tr>
<tr>
<td>mean v_{exp} (NESS/literature)</td>
<td>0.97 ± 0.01</td>
</tr>
</tbody>
</table>

Wallström et al., in prep
[Preliminary results] – 12CO/13CO ratios

- Most 12CO lines optically thick, so ratios are lower limits
- 199 sources with both 12CO and 13CO detected
 - Range: -0.28 to 78.72
 - Mean: 6.13 +/- 0.58
 - Median: 4.11
- De Beck et al 2010 from a sample of 27 stars find
 - Mean: 10.27 ± 1.98
 - Median: 8.1

Wallström et al., in prep
[Preliminary results] – Optically thin $^{12}\text{CO}/^{13}\text{CO}$ ratios

• Student project at IRyA-UNAM in Mexico
 • Dayra Torres working with Prof. Sundar Srinivasan (and me)

• Identified lines that appear to be optically thin
 • Eg. IRAS 05524+0723 [Betelgeuse] in CO 3-2, ratio 8.01
[Preliminary results] – Optically thin $^{12}\text{CO}/^{13}\text{CO}$ ratios

- NESS total: 199 sources
 - Range: -0.28 to 78.72
 - Mean: 6.13 +/- 0.58
 - Median: 4.11

- Optically thin: 54 sources
 - Range: 2.51 to 61.20
 - Mean value: 12.71 ± 1.33
 - Median: 11.56

Wallström et al., in prep
Ongoing work

• Data collection and analysis continues
 • Upper limits on non-detections
 • CO maps of ~ 50 sources
 • Line shapes
 • Time variation

• Paper on JCMT pipeline and initial heterodyne data in prep
 • Data, tables, and scripts will be released alongside publication on NESS website, CDS, github and/or observatory archives

http://evolvedstars.space/