Heterodyne Calibration

Sarah Graves
(With a great deal of help from all at EAO, especially Jan Wouterloot and Per Friberg)
Overview

1) Calibration applied **while observing**:
 - Carried out by telescope while taking an observation.
 - Included in raw files.

2) Calibration applied **after observing**:
 - Conversion from T_A^* to scientifically useful temperature or flux scale.
 - Done by PI/scientists based on telescope provided values/obs.

3) Additional post-observation **calibration fixes** sometimes required:
 - HARP: corrections for total power variation between receptors.
 - RxA3m: currently requires corrections for sideband ratio issues.

4) Recommended **work flow** for heterodyne calibration.
1) While observing

- Already applied to your raw data.
- Calibration combines measurements of ambient loads, sky measurements and a load of known temperate (heated for HARP, cooled for RxA3).
- Calibrates all ACSIS spectra into **corrected antenna temperature** (T_A^*), in Kelvin.
- Corrected for:
 - Atmospheric attenuation.
 - Scattering.
 - Rearward spillover (portion of beam not looking at sky).
1) While observing

Monitoring performance

- Spectral standard observations done every night @ appropriate freq.
- TSS checks performance of JCMT heterodyne instruments during night.
 - Expect standards to be within \(\approx 10\%\) of nominal.
- Results monitored to keep track of long term performance.
- Pointing offsets will tend to skew distribution below 'true' value.
 - Spectral standards observed as stares, so offset reduces the flux.
 - JCMT RMS pointing offset: 2” in x & y, giving 2.8” radial RMS offset
- Average spectra available online for spectral standards at many transitions.
1) While observing HARP CRL 2688 CO 3-2
1) While Observing

HARP CRL 618 CO 3-2
1) While Observing

HARP IRC+ 10216 CO 3-2

HARP: IRC+10216 (Peak intensity)

HARP: IRC+10216 Peak intensity
1) While Observing

RXA3 CRL 2688 CO 2-1
1) While observing RxA3 CRL 618 CO 2-1

![Graph of RxA3: CRL618 (Peak intensity)](chart1)

![Graph of RxA3: CRL618 Peak intensity](chart2)
1) While Observing

RxA3 IRC+ 10216 CO 2-1
1) While Observing

Heterodyne Standard Uncertainties

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Source</th>
<th>Type</th>
<th>mean</th>
<th>std</th>
<th>% error</th>
</tr>
</thead>
<tbody>
<tr>
<td>HARP</td>
<td>CRL2688</td>
<td>PEAK</td>
<td>9.4</td>
<td>1.1</td>
<td>12.1</td>
</tr>
<tr>
<td>HARP</td>
<td>CRL2688</td>
<td>INTEGINT</td>
<td>237.2</td>
<td>28.3</td>
<td>11.9</td>
</tr>
<tr>
<td>HARP</td>
<td>CRL618</td>
<td>PEAK</td>
<td>4.4</td>
<td>0.5</td>
<td>11.9</td>
</tr>
<tr>
<td>HARP</td>
<td>CRL618</td>
<td>INTEGINT</td>
<td>139.8</td>
<td>19.3</td>
<td>13.8</td>
</tr>
<tr>
<td>HARP</td>
<td>IRC+10216</td>
<td>PEAK</td>
<td>31.2</td>
<td>3.2</td>
<td>10.2</td>
</tr>
<tr>
<td>HARP</td>
<td>IRC+10216</td>
<td>INTEGINT</td>
<td>672.0</td>
<td>70.4</td>
<td>10.5</td>
</tr>
<tr>
<td>RxA3</td>
<td>CRL2688</td>
<td>PEAK</td>
<td>6.4</td>
<td>0.6</td>
<td>8.9</td>
</tr>
<tr>
<td>RxA3</td>
<td>CRL2688</td>
<td>INTEGINT</td>
<td>155.4</td>
<td>9.3</td>
<td>6.0</td>
</tr>
<tr>
<td>RxA3</td>
<td>CRL618</td>
<td>PEAK</td>
<td>3.5</td>
<td>0.2</td>
<td>6.3</td>
</tr>
<tr>
<td>RxA3</td>
<td>CRL618</td>
<td>INTEGINT</td>
<td>99.9</td>
<td>7.4</td>
<td>7.4</td>
</tr>
<tr>
<td>RxA3</td>
<td>IRC+10216</td>
<td>PEAK</td>
<td>21.7</td>
<td>1.6</td>
<td>7.5</td>
</tr>
<tr>
<td>RxA3</td>
<td>IRC+10216</td>
<td>INTEGINT</td>
<td>463.7</td>
<td>26.5</td>
<td>5.7</td>
</tr>
</tbody>
</table>
1) While Observing

Heterodyne Calibration Observations

- We recommend checking the spectral standard and heterodyne planetary observations from the same night to see if they are reasonable.
 - Look at shift comments and obslog comments on JCMTCAL observations, along with the ORAC-DR logs.
 - For archival data, you can download proposal=JCMTCAL observations from that night.
 - If you see issues please contact your support scientist directly, or the observatory via: helpdesk@eaobservatory.org
2) After observing

- After observing, it is usually necessary to convert from the telescope/instrument dependent T_A^* scale into a scientific scale; T_{MB} or T_R^*.
- Done by using the appropriate efficiencies.
 - η_{MB} for T_{MB}
 - η_{FSS} for T_R^*
- Note that different telescopes/papers may use different nomenclature or slightly different definitions.
- See e.g. Kutner & Ulich, 1981
2) After observing

Heterodyne Temperature Scales

- **Main beam temperature:** \(T_{MB} = T_A^* / \eta_{MB} \).
 - \(\eta_{MB} \) is the efficiency of the main beam of the instrument/telescope combination, as found by measuring a source of similar size to the beam (Jupiter, Uranus or Mars).
 - Most appropriate for point sources.

- **Radiation Temperature:** \(T_{R}^* = T_A^* / \eta_{FSS} \).
 - \(\eta_{FSS} \) is the efficiency of the entire telescope beam, including the sidelobes, as found by measuring the intensity from a source much larger than the beam (e.g. the moon).
 - Most appropriate for large sources filling the whole beam, otherwise a correction for source filling factor should be applied.

- Many sources are intermediate between these two extremes (e.g. clumpy molecular clouds), so the **best choice of calibration is a decision by the scientist.**
2) After observing

Flux density

- To convert to point source flux density:
 - (e.g. equivalent of T_{MB})
 - Conversion uses the aperture efficiency η_A.
 - η_A is calculated from the same data as η_{FSS}.
- For a 15m dish, the conversion factor is:
 $$S(\text{Jy}) = 15.6 \frac{T_A \, (\text{K})}{\eta_A}.$$
2) After observing

Efficiency Measurements

- Observatory regularly measures η_{MB} (and η_A) with HARP and RxA towards the planets to monitor the main beam efficiency.
 - RxA3: 230.538 GHz (CO 2-1)
 - HARP: 345.796 GHz (CO 3-2) @ tracking receptor H05
- canonical telescope values are
 - **HARP**: $\eta_{MB} = 0.64$ and $\eta_A/\eta_{MB} = 0.812$ (Uranus), 0.814 (Mars)
 - **RxA3**: $\eta_{MB} = 0.65$ and $\eta_A/\eta_{MB} = 0.867$
 - **RxA3m**: $\eta_{MB} = 0.6$ and $\eta_A/\eta_{MB} = 0.867
2) After Observing η_{MB} for HARP

(Daytime observations are shown in orange)
2) After Observing η_{MB} for HARP: variation with hour and τ
2) After Observing η_{MB} for RxA3
2) After Observing η_{MB} for RxA3: variation with hour

2) After Observing

(Some) sources of uncertainty

- Uncertainty in the known brightness of the standards.
- Pointing offsets.
- Varying efficiencies:
 - Variation due to variation in beam (e.g. surface accuracy, temperature deformation of dish etc.).
 - Systematic issues: e.g. periods where RxA3 has a different calibration value due to misalignment, time where HARP pointing could be affected by K-mirror flips.
- RxA3m: issues from sideband ratios.
- HARP only: receptor to receptor variation.

 All calibration observations by the telescope are only analysed for the tracking receptor (normally H05).
2) After Observing

η_{FSS} for HARP and RxA3

- We also have observed the Moon to determine η_{FSS}.
- η_{FSS} includes entire beam.
 - \Rightarrow Not expected to be as variable as η_{MB}.
- HARP: measured as 0.77 (2006) & 0.75 (2015) @ 345 GHz.
- RxA3: 0.72 (measured prior to 2006).
2) After Observing

Applying calibration to data files

• How to apply calibration, using KAPPA commands and an SDF file:
 1) Divide the data file by the correct value using `cdiv`.
 2) Update the 'label' attribute using `setlabel`.
 3) If changing units (e.g. to flux density), also update the `unit` attribute: `setunits`.

• Example commands to calibrate to T_{MB}:
  ```
  cdiv in=harpreduced.sdf scalar=0.64
  out=harptmb.sdf
  setlabel ndf=harptmb.sdf label='T_{MB}'
  ```
3) Additional calibration fixes

Sometimes it is necessary to apply additional fixes to correct specific instrumental problems.

Two specific cases addressed here:

- RxA3m: sideband ratio.
- HARP: detector-to-detector total power variation.
3) Additional Calibration Fixes

RxA3m

- December 2015: ASIAA mixer installed in RxA3.
- Now called RxA3m.
- Main change for users:
 - Intensity of lines are currently different when observed in the upper and lower sideband.
 - Intensity of lines will not match those found with RxA3.
 - Slight change in main beam efficiency.
 - From June/July 2016 until Jan 2017, receiver temperature at high frequencies was degrading (i.e. there is a higher noise than expected).
3) Additional Calibration Fixes

RxA3m Side Band Ratios

- Line intensities differ depending on which side band they are observed in, and differ from RxA3.
- Effect depends on the Local Oscillator (LO) frequency.
- It's not possible to measure the sideband ratios directly, therefore they have been inferred by examining the difference in intensities observed with RxA3 and RxA3m, in each sideband.
 - Estimated as a function of LO using an empirical 5th order polynomial fit.
- Relative error below 20% for LO frequency < 240 GHz and > 265 GHz.
- 240 to 265 GHz: relative errors up to almost 40% (including error from RxA3 problems at these frequencies).
- Uncertainty in line intensities ~ 15%.

3) Additional Calibration Fixes

Flow chart for RxA3m analysis.

For more details on the side band issue, see:
https://www.eaobservatory.org/jcmt/instrumentation/heterodyne/rxa

This contains at the end a look up table of sideband ratio correction factors R for different LO values.

Please note: this correction is a bit of a simplification and may be updated in the future.
3) Additional Calibration Fixes

Commands to apply correction

1. Find LO frequency of observation:

 $\text{fitslist examplereduced.sdf |grep LOFREQ}$

 LOFREQS = 234.5281306285 / [GHz] LO Frequency at start of obs.
 LOFREQE = 234.5281269598 / [GHz] LO Frequency at end of obs.

 Find sideband of observation:
 $\text{fitslist examplereduced.sdf |grep OBS_SB}$

 OBS_SB = 'LSB' / The observed sideband

2. Look this up in look up table:

 http://www.eaobservatory.org/jcmt/instrumentation/heterodyne/rxa/

 \[
 \begin{array}{cccc}
 \text{LO (GHz)} & G_t/G_a & (1 + G_t/G_a)/2 & (1 + G_a/G_t)/2 \\
 \hline
 234.0 & 0.96 & 0.98 & 1.02 \\
 234.5 & 0.96 & 0.98 & 1.02 \\
 235.0 & 0.96 & 0.98 & 1.02 \\
 \end{array}
 \]

3. Apply correction and efficiency with KAPPA (here for T_{mb}):

 $\text{cmult in=examplereduced.sdf scalar=1.02 out=example_sbrcorr.sdf}$
 $\text{cdiv in=example_srcorr.sdf scalar=0.6 out=example_tmb.sdf}$
3) Additional Calibration Fixes

HARP detector-to-detector variation

- Visible as gridlines in raster-maps, due to variation in total power response per detector.
- This variation is not directly measured, but appears to vary on a ~nightly basis.
- Fixable for some raster maps by comparing total intensity across a map in each detector from observations in a single night.
 - Calculate relative power across whole map for each detector and derive normalisation constant relative to reference receptor.
 - Apply normalisation constant to ungridded files for each detector.
 - Regrid/re-reduce the corrected raw files.
 - Assumes each detector sees ~ same emission in the map. Not valid for point sources.
- ORAC-DR has an optional flatfield recpar option in heterodyne recipes.
 - Note this can degrade quality sometimes, so not turned on by default; please inspect results carefully.
 - Add FLATFIELD=1 to your recipe parameter file to turn this on in heterodyne recipes.
3) Additional Calibration Fixes

HARP detector-to-detector variation

Jenness et al 2015: Automated reduction of submillimetre single-dish heterodyne data from the James Clerk Maxwell Telescope using ORAC-DR
4) Recommended heterodyne workflow.

1) Get observations and calibrations, reduce all with ORAC-DR.

2) Check data quality & fix/consult as necessary.
 - RxA3m: correct sideband ratio problem and/or 13CO issue.
 - RxA3: check if observations taken during period of misalignment.
 - HARP rasters: check if flat-field fix required/possible.

3) Check calibration result is within expected value +/- scatter.
 - If answer is NO: read obslogs and consult observatory for further help!

4) Select final temperature/flux scale (T_{MB}, T_R^*, Flux density).

5) Look up and apply appropriate efficiency.
 - Remember to include uncertainty in calibration to your overall uncertainty estimation, if required.
Links and references

- Heterodyne calibration pages on JCMT website:
 http://www.eaobservatory.org/jcmt/instrumentation/heterodyne/calibration/

- Spectral standard average spectra:

- PI/CoIs of projects: see OMP project pages for access to obslogs, especially TSS comments on heterodyne calibration observations.

- If required, email either your Friend of Project, or the observatory directly (helpdesk@eaobservatory.org).
 - Dr Per Friberg is head of instrumentation, and Dr Jan Wouterloot monitors the heterodyne calibration performance.