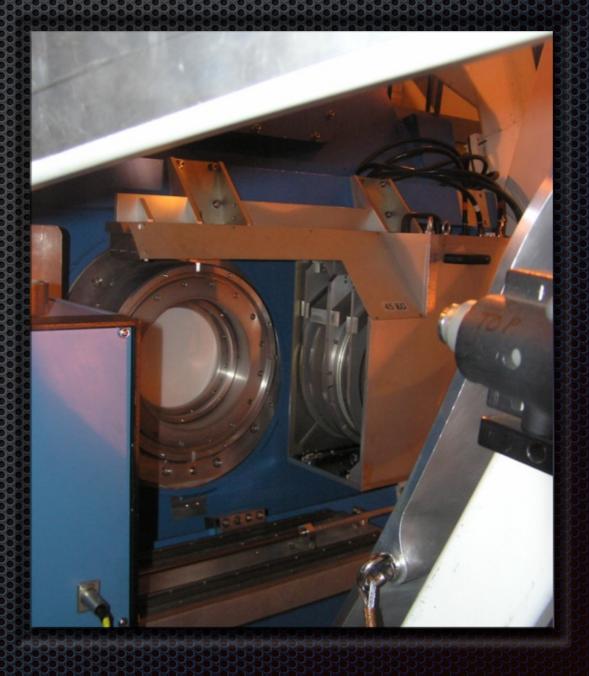

POL-2 Polarimetry & Data Reduction

Mark G. Rawlings, Support Scientist, EAO / JCMT

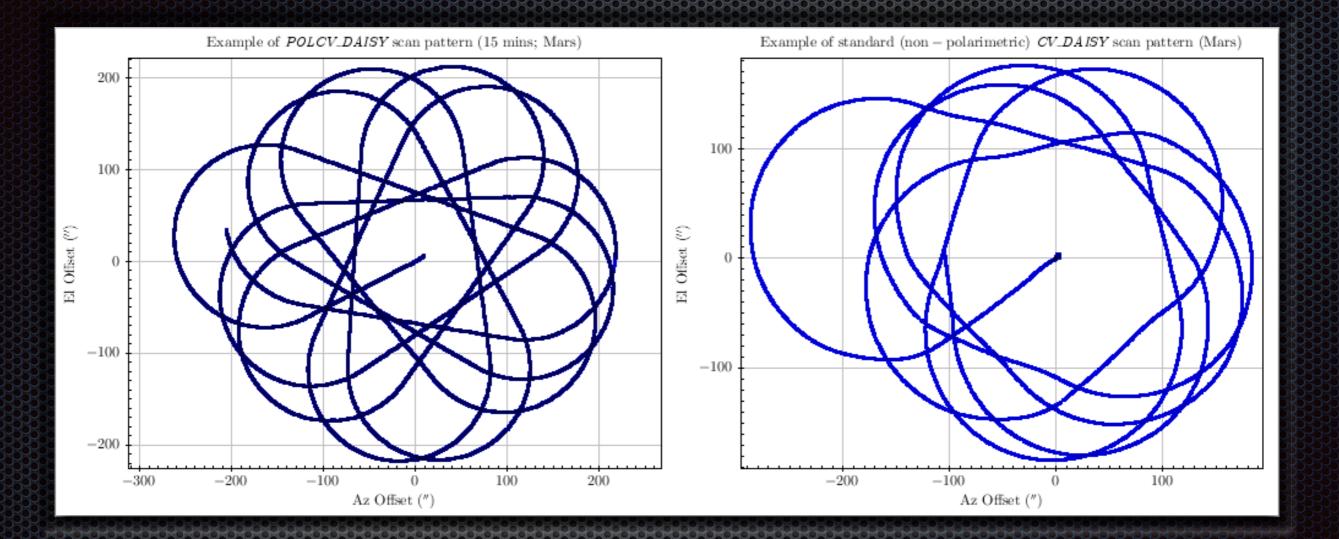
With thanks to David S. Berry


JCMT Users' Meeting 2017, Nanjing

Contents

- POL-2 Instrument Overview
- POL-2 Daisy Mode
- POL-2 Data Reduction Process
- SMURF pol2scan Command Usage
- Other Topics
 - Errors
 - Larger areas
 - Starlink GAIA & POLPACK
 - Nothing is permanent but change...
- Tutorial

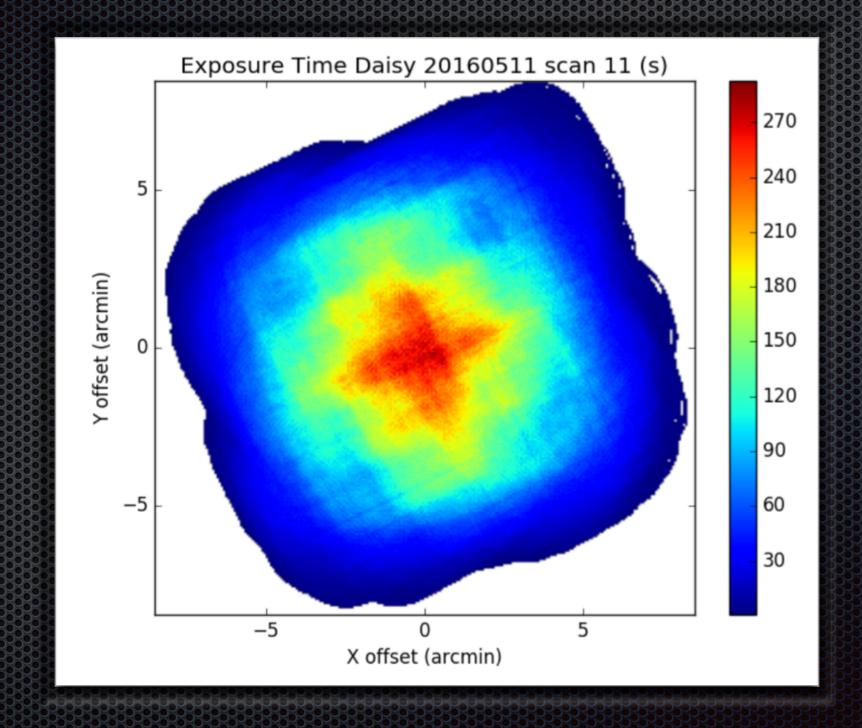
POL-2


- Polarimetry module for SCUBA-2: enables large-field continuum sub-mm imaging polarimetry
- Soptical components in "blades":
 - Calibrator (~100% polarization)
 - Half-wave plate (HWP). Continuous rotation of this modulates polarization, allowing removal of atmospheric effects. Transmission at 850µm ~ 86%
 - Analyser
- Total effective 850µm transmission ~ 74%

POL-2 Observing Mode

- "POLCV_DAISY" mode currently commissioned for 850µm only
 - "POLCV_DAISY": Special case of "CV_DAISY" scan mode with a particular set of parameter settings different from standard, non-polarimetric scans
 - Telescope must scan slowly enough to obtain sufficient on-sky data for good Q & U values
 - "Scan & Spin" mode: telescope moves with continuous velocity while POL-2 HWP spins at 2 Hz
 - ~200" in size; scan speed of 8" / s
 - DR determines a pair of Q & U values for each 0.5s segment of data stream. Length of data segment = time taken for telescope to traverse 1 pixel in generated map
 - Modulation generated by any polarization = 8 Hz at current HWP rotation speed => 4 complete modulation cycles (at 850µm)
 - Pattern ~20× slower than standard non-polarimetric SCUBA-2 Daisy pattern

POLCV_DA/SY Scan Pattern


POLCV_DAISY scan pattern (15 mins; Mars; left, dark blue) vs. standard (non-polarimetric) CV_DAISY scan pattern (Mars; first few scans only for clarity; right, light blue). In addition to differences in shape, scan patterns differ slightly in overall size.

POLCV_DA/SY Details

		Example of <i>POLCV_DAISY</i> scan pattern (15 mins; Mars)		
Parameter	Value	200		
HWP Rotation Frequency	2 Hz			
Antenna Scanning Speed	8" / s			
R ₀ (Map Pattern Radius)	133"			
R1 (Turn Radius)	99"			
R _a (Nominal Avoidance Radius)	77"	-200 -200 -100 0 100 200 Az Offset (")		

Smaller POLCV_DAISY patterns may be technically possible in future, yielding superior performance for small sources (< 1')

Typical POLCV_DA/SY Exposure Time Map

SCU	BA-2 ITC
Input	
SOURCE AND CONDITIONS	
Source position 40 C declination	on ᅌ
225 GHz opacity Band 2: $0.05 < \tau \le 0.08$	0.065
OBSERVATION	
Matched filter \square ? 850 μ m pixel size 4 \bigcirc "	SCUBA-2 offers two types of standard observing mode: "daisy" for compact sources
850 μ m pixel size 4 \odot " 450 μ m pixel size 2 \odot "	(\leq 3 arc-minutes) and "pong" patterns of
	various sizes.
REQUIREMENT	An additional observing mode is offered for polarimetry with <u>POL-2</u> .
Wavelength 850 ♀ µm Target sensitivity 2.000 mJ	Jy/beam SCUBA-2 observing modes
Calculate	
Calculator Mode	
Mode Time required for target RMS	
Change mode	

SCUBA-2 ITC (Hedwig) POL-2 Daisy supported (since 16B)

Steps for Reduction & Analysis of Raw POL-2 data - *pol2scan* (see tutorial)

- Creation of Q & U time-streams from raw analyses intensity time-stream data (using SMURF calcqu command)
 - Clean up time-streams: flat-field, convert to pW, fix any bolometer DC offsets in time-streams, remove any bolometer transients in time-streams, remove bolometer constant offsets, etc.
 - Cleaned 180 Hz time-streams converted into down-sampled 2 Hz Q & U time-streams
 - Sets of Q & U values generated from short sections of time-streams
 - Models applied Fits & notional variances (used for subsequent weighting) derived
- Creation of Q & U maps from Q & U time-stream data (using SMURF makemap command with special configuration file)
 - Factors in low scan speed, uses PCA for sky background removal, skips FLT model component, applies weights, applies correction for Instrumental Polarization (IP) effects
- Creation of vector catalogues from Q & U maps (using POLPACK polvec command)
- Display & analysis of final vector catalogues (using Starlink GAIA &/or POLPACK packages)

https://www.eao.hawaii.edu/~dberry/pol2-dr.htx/pol2-dr.html

Starlink SMURF pol2scan Usage

- Available as part of recent Starlink public software release (2016A or newer)
- Typically invoked from shell as follows:

> smurf

> pol2scan in=<Input polarimetry files to be reduced>

ipref=<Input non-polarimetric reference map>

- qudir=<Target directory to which resultant Q & U time series will be written>
- *q*=<Output NDF in which to return Q intensity map>
- *u*=<*Output NDF in which to return U intensity map>*
- *cat*=<*Output FITS file containing resultant vector catalog>*
- ipfcf=<FCF value to be used>

mapdir=<Target directory in which to return Q & U maps made from each individual observation supplied via "in" parameter, before co-adding them>

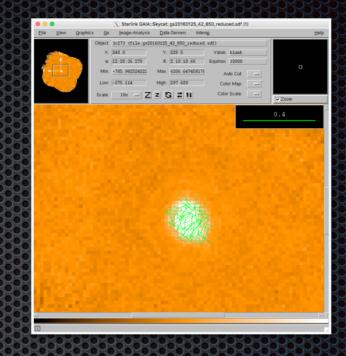
Many other parameters available: > pol2scan --help

POL-2 Data - Error Calculation

- As for non-polarimetric SCUBA-2 data, datasets also contain array of uncertainties
- First, re-bin Q & U maps so pixel size = beam size (e.g. using Starlink KAPPA "COMPAVE" command)
- Several possible ways to obtain noise estimates for Q & U maps:
 - Use GAIA "Image Regions / Image Analysis" menu to measure pixel data value standard deviation for flat part of image
 - Examine "Variance" values stored in final Q & U mosaics generated by pol2scan with GAIA (or a script), or use "Error" button in GAIA NDF display selection window to display standard deviations. These "Variance" values are created by makeup (run automatically as part of pol2scan), & measure spread of background-subtracted bolometer values that fall in each pixel
 - If many observations of science field available & Q & U maps for all observations used same reference intensity map, can estimate noise in a pixel by looking at range of values at that pixel among those observations. *Starlink CCDPACK "MAKEMOS"* command with "*GENVAR*" parameter can be used for this, e.g. (with "*qlist*" containing all input filenames):

> makemos in=^qlist out=qmosaic method=mean usevar=no genvar=yes

Vector catalogues created by pol2scan also include estimates of errors on vector lengths & angles


POL-2: Covering Larger Areas

- Use a "Daisy Chain"
- Multiple POLCV_DAISY observations with suitable spacing to provide adequate sampling
- Current recommendation (subject to change):
 - Triangular grid with Daisy centres spaced 250" apart
 - IP reference maps: Matching non-pol Daisy scans for small areas. Pong scans may be better for larger areas?

Viewing POL-2 Maps: GAIA Polarimetry Toolbox

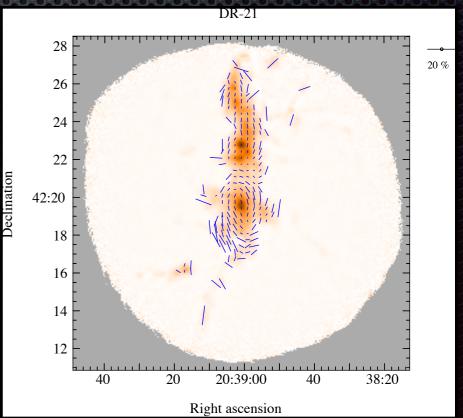
- Included as part of Starlink
 GAIA package
 - "Image-Analysis" dropdown menu option
- Enables import & manipulation of vector tables
 - Binning, vector map overlays, specific area selection, generation of statistics, etc.

GAIA: Polarimetry							
<u>F</u> ile <u>E</u> dit	<u>O</u> ptions <u>T</u> able			<u>H</u> elp			
Rendering Highlighting Key	Columns to use for: Vector length:	Vector angles:	-				
Selecting Statistics Column Names Binning	Colour: All other vectors:	Thickness:	Flashing:				
Integrate SpecPol	Colour: 💳	Thickness: 1	Flashing:				
	- Misc.: - Vector scale:	Rotation: 0	Max. vectors:]			
		Redraw	Close				
I File menu	oom	Redraw	Close				

Producing Hardcopy Vector Plots: POLPACK

POLPACK: Starlink Imaging Polarimetry Reduction Package

> polpack


- Together with KAPPA, can be used to (e.g.) generate publication-quality polarimetry maps
- Documentation:

http://starlink.eao.hawaii.edu/docs/sun223.htx/sun223.html

Help:

> polhelp

> showme sun223

Nothing is Permanent But Change...

- Starlink POL-2 data reduction still undergoing development
- New command currently being tested: pol2map
 - Total intensity map (used for IP correction & to normalize polarized intensity values into fractional polarizations) created from same POL-2 observations used to generate Q & U maps
 - Produces flatter backgrounds
 - Produces lower noise levels
 - Q & U map-making procedure same as for I better matching of spatial scales & FCF
 - 2-Pass approach used to generate total intensity map
 - Change of models used:
 - pol2map uses (COM, GAI, PCA, EXT, FLT, AST, NOI)
 - pol2scan uses (PCA, EXT, AST, NOI)

BOTTOM LINE: ALL PRESENTED INFORMATION IS SUBJECT TO CHANGE!

POL-2 DR Tutorial...

<u>http://www.eaobservatory.org/jcmt/science/</u> reductionanalysis-tutorials/pol-2-dr-tutorial-1/