Magnetic Fields of Massive Cores of DR21 Filament:

VIORY

Virial Expanding Cores in a Virial Contracting Filament?

Tao-Chung Ching^{1,2}

Shih-Ping Lai¹, Qizhou Zhang², Josep M. Girart^{3,2}, Keping Qiu⁴, and Hauyu B. Liu⁵

¹Institute of Astronomy, National Tsing-Hua University, Taiwan
 ²Harvard-Smithsonian Center for Astrophysics
 ³Institut de Ci`encies de l'Espai, (CSIC-IEEC), Spain
 ⁴Nanjing University, China
 ⁵European Southern Observatory, Germany

• Outline

- DR21 filament and massive cores
 - Virial parameters of turbulent, magnetic, and gravitational energy
 - How to measure magnetic field (B-field) strength
 - DR21 filament and its massive cores
 - SMA data
 - Analysis & Conclusion
- SMA polarization mosaic project

Introduction

Molecular clouds: highly turbulent, magnetized, filamentary structures

Goldsmith et al. 2008

Narayanan et al. 2008

Virial theorem

$$\frac{1}{2}\ddot{I} = 2(T - T_0) + \mathcal{M} + \mathcal{W}.$$
turbulence surface magnetic self-gravity field

- *W*: negative, gravitational collapse
- *T* & *M*: positive, support cloud against gravitational collapse
- *I*: proportional to the inertia of the cloud
 - $(\ddot{I} > 0)$ expansion
 - $(\ddot{I} < 0)$ collapse

Self-gravity

SFR rate

Turbulence

Larson's Laws

 $\sigma \propto L^{0.38}$

 $\sigma (\mathrm{km \, s^{-1}}) = 0.42 \, M(M_{\odot})^{0.20}$

Log-normal probability distribution function

reproduce of the filamentary structures of clouds

Magnetic Field

• $B \sim n_H^k$

- $\begin{array}{l} \mathsf{B}^2 \sim \mathsf{M} \sim \mathsf{n}_{\mathsf{H}} \mathsf{r}^3 \\ \mathsf{r} \sim \mathsf{n}_{\mathsf{H}}^{1/3} \end{array}$
- k = 2/3 for weak magnetic field models (flux conservation)
- k = 0.4-0.5 for strong magnetic field models (ambipolar diffusion)

Cloud Elongation v.s. Magnetic Field Orientation •

Taurus Cloud

Planck XXXV 2015

• From 10 pc to 0.1 pc scales, molecular clouds appear to be either parallel or perpendicular to magnetic fields

10 pc Clouds

Li et al. 2013

• Magnetic field v.s. Turbulence

Ostriker et al. 2001

- Measure magnetic fields in molecular clouds
 - Zeeman effect
 - Measure magnetic field along the light of sight (B_{los})
 - The only way to directly measure magnetic field strength
 - Linearly polarized dust emission
 - Measure magnetic field on the plane of sky (B_{pos})
 - The Chandrasekhar–Fermi equation (CF equation; Chandrasekhar & Fermi 1953) gives estimation of magnetic field strength
 - Polarized molecular line emission (Goldreich-Kylafis effect)
 - The polarization direction could be either parallel or perpendicular to the magnetic field direction
 - Velocity dispersion measurements of molecular line emission
 - The ion molecular line width of ion is expected to be wider than the width of neutral

Polarization form Magnetically Aligned Dust Grains

Optical, Near-Infrared Selective Absorption

Far-Infrared, Submillimeter Thermal Emission

- CF equation
 - $\frac{\delta B}{B} \simeq \frac{\delta V_{los}}{V_A},$

 $V_A = B/\sqrt{4\pi\rho}$ is the Alfvén speed

• Assume magnetic field model

$$B_p = Q \sqrt{4\piar
ho} \, {\delta v_{
m los}\over\delta\phi}\,,$$

• Angular dispersion function (Hildebrand et al. 2009; Houde et al. 2009, 2011, 2016)

$$1 - \langle \cos\left[\Delta\Phi\left(l\right)\right] \rangle \simeq \sum_{j=1}^{\infty} a'_{2j} l^{2j} + \left[\frac{N}{1 + N\langle B_0^2 \rangle / \langle B_t^2 \rangle}\right] \\ \times \left\{\frac{1}{N_1} \left[1 - e^{-l^2/2(\delta^2 + 2W_1^2)}\right] + \frac{1}{N_2} \left[1 - e^{-l^2/2(\delta^2 + 2W_2^2)}\right] - \frac{2}{N_{12}} \left[1 - e^{-l^2/2(\delta^2 + W_1^2 + W_2^2)}\right]\right\}, \quad \text{Rao et al. 2001}$$

2

$$\langle B_0^2 \rangle^{1/2} = \sqrt{4\pi\rho} \delta V_{los} \left[\frac{\langle B_t^2 \rangle}{\langle B_0^2 \rangle} \right]^{-1/2}$$

DR21 Filament in the Cygnus X Complex

Hennemann et al. 2012

DR21 Filament 10 pc scale 1 pc scale

Motte et al. 2007; Schneider et al, 2010; Hennemann et al. 2012 Mass: 15210 M_{\odot} N_H: 4.2 x 10²³ cm⁻² n_H: 10⁵ cm⁻³ Length: 4.3 pc Width: 0.24 pc

Massive Cores in the DR21 Filament

ð (2000)

Measurements of Magnetic Fields

- DR21 Filament
 - Blos: 0.7 mG
 - Bpos: 0.62 mG

- DR21(OH)
 - Blos: 0.4 mG
 - Bpos: 2.1 mG (Girart et al. 2013); 1.2 mG (Houde et al. 2016)

SMA Polarization Observations

Source	RA	Dec	Other Name
Cyg-N53	20:39:2.96	42:25:51	DR21(OH)-N
Cyg-N51	20:39:2.4	42:24:59	W75N-FIR2
Cyg-N43	20:39:0.6	42:24:35	W75S-FIR1
Cyg-N44	20:39:0.7	42:22:46.7	DR21(OH)
Cyg-N38	20:38:59.1	42:22:26	DR21(OH)-W
Cyg-N48	20:39:1.3	42:22:4.9	DR21(OH)-S

Results

- All segments show B-field direction
- Red & Yellow: JCMT
- Blue: SMA

Combined JCMT and SMA 880 μ m continuum maps

- Use FEATHER in casa and LINMOS in miriad
- Combine Stokes I maps, NOT combine Stokes Q and U maps
- Perform *dendrograms* to estimate core properties (Mass, Size, Density, P.A.)

Analysis

Correlations between Core P.A. (0.1 pc core), JCMT pol (0.1 pc B-field), SMA pol (0.03 pc B-field)

- Strong either-parallel-or-perpendicular alignment between 0.1 pc core and 0.1 pc B-field, weak correlation between 0.1 pc core and 0.03 pc B-field
 - small-scale B-field is less significant than large-scale B-field in core formation

 Does the either-parallel-or-perpendicular alignment break at scales below 0.1 pc?

Low-mass protostars Outflow and B-field alignment Hull et al. 2013

High-mass protostars Outflow and B-field alignment Zhang et al. 2014

- Angular dispersion functions of the massive cores
 - The functions close to random field
 - strong turbulent component in the B-field
 - B_{pos} (mG)
 - Cyg-N38: 0.56 ± 0.19
 - Cyg-N43: 0.42 ± 0.41
 - Cyg-N44: 1.71 ± 0.55
 - Cyg-N48: 0.48 ± 0.10
 - Cyg-N51: 0.46 ± 0.08
 - DR21 filament: ~ 0.62 (Girart et al. 2013)

- Total B-field strength v.s. n_{H2}
 - Cyg-N44 and DR21 filament: combine B_{los} from Zeeman observations and B_{pos} in our work
 - Other sources: assume $B_{total} = \sqrt{3}B_{los}$, uncertainty about 50%
- Slope = 0.54 ± 0.30

- $B \sim n_H^k$
 - k = 2/3 for weak magnetic field models (flux conservation)
 - k = 0.4-0.5 for strong magnetic field models (ambipolar diffusion)
- k = 0.65 ± 0.05 (Crutcher et al. 2010)
- k = 0.41 ± 0.04 in NGC 6334 (Li et al. 2015)

- Parameters for evaluating the effects of turbulence, magnetic fields, and self-gravity
 - sonic Mach number (m_s), Alfven Mach number (m_A), ratio of thermal to magnetic pressure (β)
 - cores: $m_s > m_A > 1 > \beta$, turbulence dominant
 - filament: $m_s > 1 > m_A > \beta$, B-field dominant
 - Mass-to-flux ratio (M/ Φ_B) \geq 1, B-field cannot support self-gravity
 - Virial parameters
 - cores: T(turbulence) > M (B-field) > W (gravity)
 - filament: W > M > T
 - Expanding core in contracting filament?
 - Not consider surface terms, e.x. cloud colliding
 - refill turbulence from internal origin, e.x. outflows

Source	c_s (km s ⁻¹)	σ_v (km s ⁻¹)	V_A (km s ⁻¹)	m_s	m_A	β	$\frac{M/\Phi_B}{(1/2\pi\sqrt{G})}$	$ \frac{\mathcal{T}}{\mathcal{W}} $	$ rac{\mathcal{M}}{\mathcal{W}} $	$ \frac{2\mathcal{T}+\mathcal{M}}{\mathcal{W}} $
Cur N38	0.34	15	0.0	75	2.7	0.27	2.4	1 /	0.10	2.0
Cyg-N43	0.34	1.6	1.2	8.0	2.4	0.27	1.0	5.7	0.19	12.4
Cyg-N44	0.42	2.2	1.6	9.0	2.4	0.14	2.3	1.2	0.20	2.6
Cyg-N48	0.34	1.2	0.7	6.0	3.0	0.50	4.3	0.6	0.06	1.3
Cyg-N51	0.34	1.6	1.1	8.0	2.4	0.18	1.6	2.5	0.42	5.4
DR21 Filament	0.30^{a}	0.8	3.0^{b}	4.6	0.5	0.02	3.4^c	0.04	0.28	0.36
DR21 Filament	0.30^{a}	0.8	3.0^{b}	4.6	0.5	0.02	3.4^c	0.04	0.28	0.36

Conclusions

- Highly turbulent cores
 - scattered SMA polarization segments
 - the analysis of angular dispersion function is similar to random B-fields
 - weak correlation between with the core and B-field orientation
 - $B_{pos} = 0.4 1.7 \text{ mG}$
 - $B' \sim n_{H}^{0.54}$
 - $m_s > m_A > 1 > \beta$, turbulence dominant
 - T(turbulence) > M (B-field) > W (gravity)
- Highly magnetized filament
 - ordered JCMT polarization segments, B-field perpendicular to the filament
 - either-parallel-or-perpendicular alignment between core and B-field
 - $m_s > 1 > m_A > \beta$, B-field dominant
 - W (gravity) > M (B-field) T(turbulence)

SMA Polarization Mosaic Project PI: Tao-Chung Ching

- NTHU: Shih-Ping Lai, Eswaraiah Chakali, Huei-Ru Chen, Jia-Wei Wang
- ASIAA: Ya-Wen Tang, Hsi-Wei Yen, Patrick M. Koch, Ramprasad Rao, Naomi Hirano, Shang Hsien, Ruben Krasnopolsky, Chin-Fei Lee, Wing-Kit Lee, Sheng-Yuan Liu, Shigehisa Takakuwa, Liang-Yao Wang

CfA: Qizhou Zhang, Ken Young, Glen Petitpas, Ryan Howie

Institue de Ciencies de l'Espai: Josep M. Girart

 Single-point polarization observations

SMA 1.3 mm

Measurements of SMA off-axis instrumental polarization

- $\Delta P = 0.3 \pm 0.1\%$
- △ P.A. < 5⁰

Table 1: SMA off-axis polarization measurements of 3C279

Position -	Stokes Values (Jy/beam)		$P_{ol}(\%)$	$\mathbf{P}\mathbf{\Lambda}$ (°)	Residual Polarization		
	Ι	Q	U	1 01 (70)	IA()	$\Delta Pol (\%)$	ΔPA (°)
1	10.27	-0.059	-0.434	4.26 ± 0.08	138.9 ± 0.5	-	-
2	8.18	0.001	-0.373	4.56 ± 0.10	135.0 ± 0.6	0.30 ± 0.13	-3.9 ± 0.8
3	6.20	0.003	-0.277	4.47 ± 0.13	134.7 ± 0.8	0.21 ± 0.15	-4.2 ± 1.0
4	4.38	-0.033	-0.226	5.20 ± 0.18	139.2 ± 1.0	0.94 ± 0.20	0.3 ± 1.1
5	8.37	-0.062	-0.337	4.09 ± 0.10	140.2 ± 0.7	-0.17 ± 0.13	1.3 ± 0.8
6	9.14	-0.100	-0.380	4.30 ± 0.09	142.4 ± 0.6	0.04 ± 0.12	3.5 ± 0.8
7	9.98	-0.086	-0.471	4.79 ± 0.08	140.1 ± 0.5	0.53 ± 0.11	1.2 ± 0.7
8	8.45	-0.050	-0.376	4.49 ± 0.09	138.8 ± 0.6	0.23 ± 0.12	-0.2 ± 0.8

 Multiple pointing polarization data of extended sources from SMA archive

∆P ~ 0.5

 \triangle P.A. = 6^o at a distance of 30", 9^o at a distance of 40"

- Pilot observations
 - W51 e2/e8 & W51 north

Orion BN/KL

- Bistro legacy project (A magnetic field survey of the Gould Belt clouds), PI: Derek Ward-Thompson
- Members from Taiwan: Ya-Wen Tang, Patrick Koch, Vivien Chen, Shi-Ping Lai, Jia-Wei Wang, Sheng-Yuan Liu, Hsi-Wei Yen, Tao-Chung Ching

JCMT + SMA polarization mosaic map

Thank you for your attention

