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magnetic fields in the milky way

353 GHz polarised dust emission - ESA and the Planck Collaboration

∙ Fluctuations in magnetic fields
∙ Large-scale coherent fluctuations aligned with the spiral arms
(ordered field)

∙ Small-scale turbulent fluctuations (random field)
∙ Turbulence transfers energy from large to smaller scales

∙ Multiple energy-injection scales?
∙ Most important contributions?

∙ How can we quantify these fluctuations?
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synchrotron emission

Emission of relativistic electrons around magnetic field lines

d
dτ (mγv) = q

(v
c × B

)

Lν ∝ ν−α

∙ Linear polarisation
∙ Luminosity depends on the
frequency emission

∙ Polarisation describe by the
two pseudo-vectors Stokes Q
and U.
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diffuse synchrotron emission

Synchrotron radiation carries the imprint of the magnetic field at the
point of origin and along the propagation path.

Linear polarisation vector P = Q+ iU
Polarisation intensity |P| =

√
Q2 + U2

Angle of polarisation θ = (1/2) tan−1(U/Q)

Faraday rotation θ = θ0 + ϕλ2

Faraday depth ϕ = 0.81
∫ observer
source neB · dl

3



rotation measure

Stil, Taylor & Sunstrum 2011

4



australia telescope compact array (atca) 1.4 ghz

Gaensler et al. 2011
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limits of interpretation

1. Data are usually interpreted in terms of |P| or θ alone.

2. |P| and θ are not preserved under arbitrary translations and
rotations in the Q–U plane.

∙ A smooth distribution of intervening polarized emission
∙ A smooth screen of foreground Faraday rotation
∙ Missing large-scale structure in interferometric data

3. We need to define an invariant quantity under translation and
rotation in the Q–U plane.
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the gradient of linear polarisation



the gradient of linear polarisation

Gaensler et al. 2011

|∇P| =

√(
∂Q
∂x

)2
+

(
∂U
∂x

)2
+

(
∂Q
∂y

)2
+

(
∂U
∂y

)2

|∇P| measures the rate at which the polarisation vector traces out a
trajectory in the Q–U plane as a function of position on the sky.
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the gradient of linear polarisation
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the gradient of linear polarisation

∙ Comparisons with MHD
simulations

∙ Define filament types:
∙ “Double jumps”
∙ Moments (Skewness,
Kurtosis)

∙ Different types of turbulence
(subsonic, supersonic)

Gaensler et al. 2011

Burkhart, Lazarian & Gaensler 2012
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the gradient of linear polarisation
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∙ Invariant under rotation and translation in the Q–U plane.
∙ Trace the rate of change of the polarisation vector in the Q–U
plane (|P| and θ).

∙ Can reveal properties hidden by a foreground screen (polarised
emission or Faraday screen).

∙ The gradient is only sensitive to the smallest spatial scale.

∙ May enhance noise present in the data (Burkhart, Lazarian &
Gaensler 2012).
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gradient of stokes q

Figure
∙ Smoothed and
unsmoothed signal

∙ Derivative of the
unsmoothed signal

∙ Derivative of the smoothed
signal

Robitaille & Scaife 2015 MNRAS, 451 (1), 4891
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multiscale analysis of the gradient of linear polarisation



multiscale analysis of the gradient of linear polarisation
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multiscale analysis of the gradient of linear polarisation

∙ The direct convolution of the Derivative of a Gaussian (DoG)
∙ The function satisfies the properties of a wavelet transform
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multiscale analysis of the gradient of linear polarisation

Wavelet Transform

f̃(l, x) =


f̃1 = 1

l2
∫
ψ1

[
(x′−x)

l

]
f(x′)d2x′

f̃2 = 1
l2
∫
ψ2

[
(x′−x)

l

]
f(x′)d2x′,

where

ψ1(x, y) =
∂mϕ(x, y)
∂xm and ψ2(x, y) =

∂mϕ(x, y)
∂ym .
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multiscale analysis of the gradient of linear polarisation

Original Gradient of Linear Polarisation:

|∇P| =

√(
∂Q
∂x

)2

+

(
∂U
∂x

)2

+

(
∂Q
∂y

)2

+

(
∂U
∂y

)2

Multiscaled Gradient of Linear Polarisation:

|∇P̃(l, x)| =
√

|Q̃(l, x)|2 + |Ũ(l, x)|2,
|Q̃(l, x)| =

√
|Q̃1(l, x)|2 + |Q̃2(l, x)|2,

|Ũ(l, x)| =
√

|Ũ1(l, x)|2 + |Ũ2(l, x)|2.
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canadian galactic plane survey 1.4 ghz (landecker et al. 2010)

Figure: From left to right: the |∇P̃(l, x)| values at four different scales l= 9.6, 45.7, 153.6 and 434.4
arcmin. White lines represent maxima chains corresponding to the scale (WTMM, Arnéodo et al.
2000, European J. Phys. B, 15, 567). 18



power spectrum



power spectrum

∙ The power spectrum of an
image can be calculated from
its wavelet coefficients.

∙ ∆-variance analysis (Stutzki
et al. 1998, Bensch et al. 2001,
Ossenkopf et al. 2008)

∙ Some directional wavelets
can reproduce the classical
Fourier power spectrum
(Kirby 2005, Robitaille, Joncas
& Miville-Deschênes 2014).

∫
|f(x)|2d2x = C−1

ψ

∫ ∫
|̃f(l, x)|2

l2 dld2x

(1)

E(l) =
∫

|̃f(l, x)|2
l2 d2x (2)

SP(l) =
1

NxNy

∑
x

|∇P̃(l, x)|2 (3)
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power spectrum

Comparison between the wavelet power spectrum of |∇P̃| and the
Fourier power spectrum of |P|
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power spectrum

Comparison between the wavelet power spectrum of |∇P̃| and the
Fourier power spectrum of |P|
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synchrotron polarisation seen in e & b mode



spin-2 decomposition

Spin ±2 spherical harmonic decomposition of Stokes parameters Q
and U in two opposite parities, the magnetic-type parity (B-modes)
and the electric-type parity (E-modes) (Zaldarriaga & Seljak 1997).

∙ Rotationally invariant
quantities.

∙ The construction of E and B
out of Q and U is by its very
nature nonlocal.

∙ Transformation in the
spherical harmonic domain.

(Q± iU)′ = exp(∓2iθ)(Q± iU)

aE,ℓm = −(a+2,ℓm + a−2,ℓm)/2

aB,ℓm = i(a+2,ℓm − a−2,ℓm)/2
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spin-2 decomposition

∙ The scalar field E remains
unchanged under parity
transformation.

∙ The pseudo-scalar field B
changes sign under parity
transformation.

∙ Finding ordered magnetic
field at small-scales?

Zaldarriaga 2001 PhRvD, 64 (1), 103001
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conclusion



conclusion

∙ Fluctuations traced by |∇P̃| exist at larger scales on data
completed with lower spatial frequencies.

∙ We can measure the power spectrum of |∇P̃| using the wavelet
formalism.

∙ E- & B-mode decomposition of polarised synchrotron emission
can revealed ordered magnetic field structures.

∙ |∇P̃| and E,B-mode decomposition can be used as
complementary tools in order to understand complex physical
processes involving magnetic fields.

∙ Future: comparison with simulations (multiple energy-injection
scales?)
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Questions?
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