

Outflows in regions of massive star formation

Suzanne Ramsay (ESO), Watson Varricatt (UKIRT), Chris Davis (NSF)

- Do high mass stars (>8Msolar) form in the same way as low mass stars?
- Formation mechanisms for massive stars
 - Via gravitational collapse and disk accretion as for low mass stars?
 - Via competitive accretion? (e.g. Bonell et al. 2005, Bate et al. 2005)
- Problems with disk accretion mechanism
 - For M>~ 10Msolar, Kelvin Helmholtz timescale exceeds the free fall timescale (t_{KH}~10⁴ years for an O star)
 - Contraction proceeds faster than accretion and hydrogen burning begins while the protostar is still embedded in the cloud
 - Radiation pressure prevents further accretion of mass (but see e.g. Krumholz et al. 2009, Kuiper et al. 2010,2011, Zinnecker & Yorke 2007 review)

Surveying for outflows

Sample of 50 HMYSOs selected

NH₃ (1,1) and (2,2) emission (Molinari et al. 1996), H₂0 and CH₃OH maser emission (Sridharan et al. 2002), High velocity CO (Shepherd & Churchwell 1996, Beuther 2002)

Imaging survey searching for outflows around HMYSO candiates with the UKIRT-UFTI

- Filters: K, 1-0 S(1) H2 at 2.122μm, also HI Br γ
- > 2.2'x2.2' images, 5 σ limit: K=19, 1.3x10⁻¹⁸wm⁻²arcsec⁻²

New detections of embedded young stellar clusters 76% of sources have H₂ emission Br γ not detected in any of the sources IRAS 20162+4104 IRAS 05137+3919 IRAS 20062+3550 d=1.7kpc, L=10.0x10³ L_o d=11.5kpc, L=225.0x10³ d=4.9kpc, L=3.2x10³L_o

3D spectroscopy of IRAS 18264-1152/JAC Nov 2016

Results

2MASS and IRAS colours used to identified YSOs that may be the driving sources of the outflows

Results on outflows

- 76% of sources have H₂ emission; 50% aligned
 - Collimation factor: max=19; min=2; typically 4-8

Factors typical of low mass YSOs

Where CO data exist, outflow origin and direction agree

- Aligned knots of H₂ due to shock excitation in jets
 - Caratti o Garatti et al. 2008, Davis et al. 2004, Todd & Ramsay Howat 2006
- Objects from early B to late O spectral type form collimated outflows. Accretion happens in the pre-UCHII phase
- Survey supports disk accretion as the main mechanism for formation

- Improve association of NIR sources with the outflows and sources at other wavelengths
- Determine outflow characteristics
 - Mass flow rates; Opening angles; Kinematics; Excitation conditions
- K band spectroscopy offers the possibility to determine these at high spatial and spectral resolution (Caratti o Garatti et al. 2008, Davis et al. 2004, Caratti o Garatti et al. 2015)
- 'Wide' field IFU spectroscopy with KMOS has the potential to survey and characterize simultaneously

KMOS on VLT

Near infrared 0.8-2.5um

- 24 fields of 2.8 x 2.8 arcsecs, 0.2 arcsec per spaxel
- Our observations: mosaic mode, K band grating with R~4000 (75km/s), 70 000 spectra over ~1'sq

3D spectroscopy of IRAS 18264-1152/JAC Nov 2016

Introducing IRAS 18264-1152

d=3.5kpc, L=10⁴ Lsolar, outflow length~45arcsecs/0.75parsec IRAS position=open triangle; 1.3cm sources='x', 7mm source='#;,1.2mm-source ='*'

3D spectroscopy of IRAS 18264-1152/JAC Nov 2016

IRAS 18264-1152 d=3.5kpc, L=10⁴ Lsolar

KMOS v=1-0 S(1) of H_2 300s per pixels; 2.6h inc overheads for the map

65 arcsecs/1.1pc

Properties of the outflowing gas

H₂ rotational-vibrational emission line spectrum.

H₂ Excitation Mechanism

Boltzmann diagram of log (H2 column density) vs energy level.

Fully thermalized, shock excited gas has a single characteristic temperature. Deviations indicate non-LTE distribution e.g. UV excited, fluorescent emission. Detected emission is characterized by temperatures in the range 2000-2500K.

Counterpart of the HMYSO?

A

Β

SPITZER (red) plus KMOS H₂ v=1-0 S(1) (green) plus K continuum (blue)

KMOS H₂/SPITZER IRAC-2

Counter part of the HMYSO?

WFCAM K band/UIST L band

3D spectroscopy of IRAS 18264-1152/JAC Nov 2016

= II 🕨 #= #= II == II == 🔟 📧 #= 1# 💥 🙆 🛶 🔒

Accretion luminosity calculated from Bry luminosity (Muzerolle et al. 1998)

Lacc~100Lsolar for these sources

3D spectroscopy of IRAS 18264-1152/JAC Nov 2016

IRAS 18264-1152 d=3.5kpc, L=10⁴ Lsolar

KMOS v=1-0 S(1) of H_2 300s per pixels; 2.6h inc overheads for the map

65 arcsecs/1.1pc

Velocity map in 1-0 S(1) H₂

Β

Black: -60km/s <v<-30km/s Blue: -30km/s <v<0km/s Green: 0<v<30km/s Red: 30<v<60km/s Radial velocity of IRAS18264-1152: 43.6km/s (Bronfman, Nyman & May 1996)

3D spectroscopy of IRAS 18264-1152/JAC Nov 2016

.

Counter part of the HMYSO?

CGS4/WFCAM H₂

CGS4/WFCAM H₂

Measured velocities of the outflow

	Vmax blue, Vmax red kms ⁻¹	
1-0 S(1) H ₂	75.3,58.4	
SiO (2-1)	13.4,64.2	Sánchez- Monge et al. (2013)
SiO (5-4)	13.4,62.6	
HCO+ (1-0)	33.4,61.8	
SiO (8-7)	?,63	Leurini et al. (2014)
CO (4-3)	?,73	
¹² CO (2-1)	28,52	Beuther et al. 2002

Properties of the outflow

- The brightest knots have $L_{H2} \sim 3L_{solar}$, typical of other HMYSO outflows ➢ In total ~17L_{solar} Mechanical luminosity in CO $\geq \sim 20L_{solar}$ (Beuther et al. 2002) Typical outflow rate (warm gas), $\sim 10^{-7.5} \,\mathrm{M_{solar}} \,\mathrm{yr^{-1}}$ Dynamical timescale ~2.4x10⁴ years
- $\begin{array}{c}
 40 \\
 20 \\
 0 \\
 -20 \\
 -40 \\
 \end{array}$ $\begin{array}{c}
 18264 1152 \\
 \hline
 0 \\
 -20 \\
 \hline
 0 \\
 \hline
 12CO J=2-1 \\
 \hline
 40 \\
 20 \\
 0 \\
 \hline
 0 \\
 -20 \\
 \hline
 0 \\
 \hline
 0 \\
 -20 \\$
- Outflow rate: $\dot{M}(H_2) = 2 \mu m H N H_2 A v_t / lt$

(Caratti o Garatti et al. 2008, Nisini et al. 2005)

H₂ luminosity versus source bolometric luminosity

Sequence for low mass>>high mass YSOs from Caratti o Garatti et al. (2015)

Conclusions on the outflows

- Spectral imaging with KMOS permits a complete survey of such a region with simultaneous determination of the excitation in the region, outflow rates and accretion luminosity of YSOs in the region
- Velocity information is crucial in interpreting these regions
- Identification of the driving source the outflow remains a challenge
- The properties of the outflow from IRAS 18264 may be consistent with other HMYSOs

The ambient medium

The ambient medium

Emission from the gas surrounding the outflow and at the rest velocity of the cloud shows evidence of fluorescent excitation and with an ortho-para ratio of 1.75

Emission from [Fe II]

Emission from [Fe II] detected at a single location in the vicinity of source 'B' and the bow shock

Blue – Source 'B' Red – H_2 Green - [Fe II]

From the existing data set

- SED modelling of the centra source
- Confirmation of the nature and origins of the [Fe II] emission
- Follow-up with higher angular resolution at longer wavelengths of both the outflow and the central source