Dense gas tracers and star formation laws: Multiple transition CS survey in nearby active star-forming galaxies

Zhi-Yu Zhang 张智昱 U. Edinburgh/ESO

Dense gas really matters.

+ES+

Collaborators: Yu Gao (PMO) Padelis Papadopoulos (Cardiff) Thomas Greve (UCL) Christian Henkel (MPIfR) Junzhi Wang (SHAO) Yinghe Zhao (PMO/IPAC) Manolis Xilouris (NOA) Rob Ivison (ROE/ESO) Karl Menten (MPIfR) et al.

Outline

Background
Gas tracers and Star formation
Star formation laws

Surveys and Results
Multiple-J CS surveys in galaxies
Star formation vs. dense gas emission

• MALATANG and more.

Summary

IC 342 HI (atomic gas)

THINGS

н I kpc

IC 342 HI (atomic gas) ¹²CO J=I-0 (molecular gas)

THINGS NRAO 12m

04 May 2016, EAO, Zhi-Yu Zhang

н I kpc

IC 342 HI (atomic gas) $^{12}CO J = I - 0$ (molecular gas)

IR emission (star formation)- THINGS NRAO 12m Spitzer 70um

н I kpc

On kpc scales, SFR is more related to H_2 gas, rather than to HI.

IC 342 HI (atomic gas) $^{12}CO J=I-0$ (molecular gas)

IR emission (star formation) THINGS NRAO 12m Spitzer 70um

Galactic Ring Survey (GRS)

On kpc

than HI

), Zhi-Yu Zhang

Which gases are forming stars? - Galactic view

GRS ¹³CO J=I-0 Extended on ~ 10 pc scales Low volume density ~ 10²-10³cm⁻³

Which gases are forming stars? - Galactic view

Which gases are forming stars? - Galactic view

GRS CS J=2-1

Compact on ~ sub-pc scales High volume density ~10⁴-10⁶cm⁻³

Star Formation Laws: Gas - SFR relations

SFR

Kennicutt 1998

Krumholz et al. 2012

Gao & Solomon 2004

Tracers of Physical Conditions in Molecular Clouds

INFRARED AND MICROWAVE MOLECULAR LINES AS PROBES OF PHYSICAL CONDITIONS IN MOLECULAR CLOUDS **High excitations** H2 - Low J Rotat. CO-Low J 102 Shocks, XDR etc. MOLECULAR HYDROGEN DENSITY [cm⁻³] Emission-Absorption mm-Emission (Rot.) 28/17µm H₂ - Mid J Sym – Absorption Rotat. Emission (Ro. Vibr.) **GMCs** 3-10µm CO - Mid J OH, CH Rot. Emission Absorption Submittimeter H₂ - Ro-Vibr. (FIR, radio) 104 Emission NH₃ Inversion CO - High J 1 - 2µm Emission (1.2 cm) Rot. Emission Metastable Far - Infrared Heavy Top Rot. NH, Inversion mm-Emission Emission (1.2cm) 10⁶ H2CO, HCN. HCO". CS, HC3N, etc. Non – metastable Heavy Top Rol. Submm-Emission **Dense Cores** 10⁸ Light Hydride Rot. Emission CO - Mid J Ro-Vibr. Far - Infrared Emission HO, OH, CH, NH 4,6µm CO - High J Overtone Bandhead Emission 10¹⁰ OH 2.3µm Genzel 1992 Si 0, H₂0 Maser Emission 30 100 300 1000 3000

KINETIC TEMPERATURE [K]

Dense gas tracers $n_{crit} > 10^4 \text{ cm}^{-3}$

When n(H₂) > n_{crit}: Collisional excitation dominant. Easily be thermalised.

$$n_{\rm crit} = \frac{\sum_{l < u} A_{ul}}{\sum_{l \neq u} C_{ul}}$$

$$\begin{aligned} n_{crit}(HCN) &: 10^{4} \sim 10^{7} cm^{-3} \\ n_{crit}(HCO^{+}) &: 10^{4} \sim 10^{6} cm^{-3} \\ n_{crit}(CO) &: 10^{2} \sim 10^{5} cm^{-3} \\ n_{crit}(CS) &: 10^{4} \sim 10^{6} cm^{-3} \end{aligned}$$

HCN : IR-pumping, XDR, chemistry on T_{kin}. e.g. Weiss et al. 2008; Graci-Carpio et al. 2006; Lintott & Viti 2006; Baan et al. 2008 HCO⁺ : Shock, ionisation fields, etc.

e.g. Dickinson et al. 1980; Dickmann et al. 1992; Papadopolous et al. 2007

High-J CO: Warm gas.

: Weak (~I/4 of HCN intensity), chemically

stable?

CS

e.g. Charnley 1997; Martín et al. 2008;2009

Simulations of star formation laws

higher transitions/densities have lower slope indices?

L'gas-LIR correlations -- CO I-0 (n_{crit}~ 4 x 10² cm⁻³)

L'gas-LIR correlations -- HCN I-0 (n_{crit}~ 2 × 10⁵ cm⁻³)

May 2016, EAO, Zhi-Yu Zhang

-- SFR

⁰⁴ May 2016, EAO, Zhi-Yu Zhang

L'gas-LIR correlations -- HCN 3-2 (n_{crit}~ 5 x10⁶ cm⁻³)

⁰⁴ May 2016, EAO, Zhi-Yu Zhang

Galactic CS & HCN studies

CS 2-1:

Least squares : $\log(L_{IR}) = 1.03(\pm 0.05) \times \log(L'_{CS2-1}) + 3.25(\pm 0.11); r = 0.80$

Robust fit : $\log(L_{IR}) = 0.87 \times \log(L'_{CS2-1}) + 3.56$

CS 5-4:

Least squares fit : $\log(L_{IR}) = 1.05(\pm 0.05) \times \log(L'_{CS5-4}) + 3.77(\pm 0.08); r = 0.86$

Robust fit : $\log(L_{IR}) = 0.86 \times \log(L'_{CS5-4}) + 3.90$

CS 7-6:

Least squares fit : $\log(L_{IR}) = 0.81(\pm 0.04) \times \log(L'_{CS7-6}) + 4.31(\pm 0.06); r = 0.81$

Robust fit : $\log(L_{IR}) = 0.64 \times \log(L'_{CS7-6}) + 4.58$

The average density determined from CS excitation of the massive clumps in our sample is about $10^{5.9}$ cm⁻³ (Plume et al. 1997), less than the critical density of all the tracers in this study except for the CS 2–1 line (Table 9), but greater than the effective density (Table 9) and the density that was found to contribute most to the HCN 1–0 line in the simulations of Krumholz & Thompson (2007). In fact, a density derived from excitation analysis is biased toward the densest regions and the mean density of the clumps in the sense of mass divided by volume is generally less (e.g., Shirley et al. 2003). As noted above, the relations we find do not support the suggestions by Krumholz & Thompson (2007) or Narayanan et al. (2008).

Issues in observational results

IR pumping ? Chemistry?

Stable tracers need.

IR size > beamsize Either to map gas emission or to match IR with beam

To test the above models in galaxies, multiple transition surveys of chemically clean dense tracers, e.g. CS lines, are needed.

Sample Selection:

- IRAS Revised Bright Galaxies sample (IRAS RBGs, Sanders 2003). Flux cutoff: F100um >100 Jy, F60um >50 Jy.
- 2. Rich detections of CO and HCN lines.
- 3. A large range of L_{IR} , and galaxy types: Nearby normal galaxies, starburst, LIRGs, and ULIRGs.

~ 50 galaxies are selected

Multiple-J CS survey

~ 280 hours in total

Multiple transitions (J=1-0 to 7-6) of CS lines towards \sim 40 nearby normal galaxies, starburst, and (U)LIRGs

Samples and Detections

L'_{gas} - L_{IR} (small targets) CS J=I-0 n_{crit} ~ $I \times 10^4 cm^{-3}$

AO, Zhi-Yu Zhang

L'gas-LIR (small targets)

CS J=1-0 to J=5-4

Beam matching photometry for extended targets

$L_{SD} = R_{SD} \times L_{TIR}(IRAS)$

 $R_{SD}=F_{beam}/F_{total}$ varies at different bands Assuming whole galaxy share one IR SED.

L'cs-L_{IR} correlations Beam matching correction

L'cs-L_{IR} correlations ~ 8 orders of magnitude

 $n_{crit} \sim 1 \times 10^5 \text{ cm}^{-3}$

log(L_{IR}) [L_☉

L'cs-L_{IR} correlations ~ 8 orders of magnitude

log(L_R) [L_©

 $n_{crit} \sim 2 \times 10^{6} \text{ cm}^{-3}$

L'cs-L_{IR} correlations ~ 8 orders of magnitude

HCO⁺ J=4-3 -- observed simultaneously with CS J=7-6

HCO⁺ J=4-3 -- observed simultaneously with CS J=7-6

HCN J=4-3 -- observed simultaneously with CS J=7-6

HCN J=4-3 -- the highest n_{crit} tracer

Dense gas tracers with $n_{crit} \sim 10^4 - 10^8 \text{ cm}^{-3}$

Dense gas tracers have linear correlations irrespective to n_{crit}, universally over 8 orders of luminosity magnitudes.

Does time scale matter? -- For Dense gas: probably No.

If $L_{IR} = (L'_{dense})^N/t_{ff}$, N will decrease with n_{crit} . This will be contradictory to our observed results.

- 1) Dense molecular gas (n(H₂)~> 10⁴ cm⁻³) is the star-forming gas.
- 2) How much dense gas, how much star-formation —linear correlations.
- 3) L'_{dense}-L_{IR} universally stays linear from Galactic cores to galaxies, irrespective to critical density, once it is $> 10^4$ cm⁻³.

The other half of the story

Either to map gas emission or to match IR with beam

JCMT 390 hrs large program

- Mapping HCN/HCO+ J=4-3 in ~20 nearby star-forming galaxies.
- Synergy with Herschel FTS high-J CO and excitation modelling.
- Characterising the physical/chemical conditions and excitations of the SF units probed by HCN/HCO+

Dense gas emission on disks and arms.

Different mode of star formation on disks?

Chen et al. 2015

Usero et al. 2015

MALATANG will give the answers.

Synergy the HCN/HCO+ SLEDs with CO

Papadopoulos + 2014

Thank you!

Background: Gymnastic music ALMA will be helpful!

Stars are forming in dense molecular gas cores

GMCs: $n(H_2) \sim 10^2 \cdot 10^3 \text{ cm}^{-3}$ $T_{kin} \sim 10 \cdot 20 \text{ K}$ <u>D</u> $\sim 10 \cdot 100 \text{ pc}$

Dense cores:

Backup Slides

LVG+ML/Bayesian Modelling with dense gas tracers and CO

Model high-J CO using LVG results of HCN (NGC 6240)

~60-70% of the molecular gas is in dense gas phase. The thermal state of molecular gases can not be maintained by FUV from PDRs.

Detailed LVG analysis will be done for the whole sample.

L'_{dense} is a first order approximation of M_{dense} .

Detections of high n_{crit} lines do not necessarily mean that the gas densities are above n_{crit} , because they can be subthermally excited.

Analysis on excitation conditions is needed.

Surface density correlation of HCN -10

$HCO^+J=1-0$

Fitting results

Table 3.8: Fitting parameters of the correlations of $L'_{\rm CS}$ - $L_{\rm IR}$											
	Transition	Slope index	Intercepts	r ^a	s ^b			Intercept vs.			
fitting without beam match correction							4				
($CS J=1 \rightarrow 0$	0.71(0.10)	5.99(0.76)	0.82	0.31						
($CS J=2 \rightarrow 1$	0.88(0.05)	4.57(0.40)	0.94	0.24						
(CS $J=3→2$	0.83(0.05)	5.17(0.34)	0.93	0.26						
(CS $J=5→4$	0.69(0.06)	6.40(0.42)	0.91	0.25						
($CSJ=7\rightarrow 6$	0.68(0.08)	6.60(0.56)	0.89	0.33			4 -			
fitting with beam match correction											
($CS J=1 \rightarrow 0$	0.94(0.07)	3.96(0.52)	0.93	0.24		epts				
($CS J=2 \rightarrow 1$	1.20(0.06)	1.95(0.44)	0.96	0.27		terc				
($CS J=3\rightarrow 2$	1.13(0.05)	2.80(0.34)	0.96	0.25		In	$\sim CS/-6$			
($CS J=5 \rightarrow 4$	0.99(0.06)	4.11(0.44)	0.96	0.24		3	.5 -			
($CS J=7 \rightarrow 6$	0.99(0.06)	4.06(0.43)	0.98	0.17						
-	fitting with only point sources										
($CS J=1 \rightarrow 0$	0.95(0.09)	3.93(0.69)	0.90	0.26						
($CS J=2 \rightarrow 1$	1.04(0.09)	3.30(0.72)	0.94	0.22						
($CS J=3\rightarrow 2$	1.02(0.09)	3.67(0.69)	0.92	0.22			3			
($CS J=5 \rightarrow 4$	0.96(0.11)	4.33(0.80)	0.91	0.24			Rotational Quantum Number J _{up}			

sub-linear slope indices for uncorrected targets linear correlations for point targets and beam matched targets

Aperture Correction -- beams are small

: Parameters of the photometry.

		CS2-1	(25'')			CS 3-2	(17'')				
Source name	24Ratio	24Apercor	70Ratio	70Apercor	24Ratio	24Apercor	70Ratio	70Apercor			
		$^{1.17}$	റ.060			~3	$0.^{33}$				
		17	742			3	0.				
		17	S			3	0.(orturo		
Conv		Dhat					cituic		Einel flux		
CONV	olutio	חכ		rnotometry					. •		Final nux
		17					0.1	corr	rection	BALLANDER AND	
		17	149			5	0.				
Newsymp		.17	.148			5	0.071				
NGC3028 NCC2070	0.390	1.17	0.140	1.819	0.299	1.00	0.081	2.07			
NGC5079	0.008	1.17	0.162	1.819	0.052	1.53	0.105	2.07		-	
NGC0520 NGC7479	0.703	1.17 1 17	0.339	1.819	0.000	1.53	0.200	2.07			
NGC1530	1	1	1	1	1	1.00	1	1			
NGC7771	0 465	1.17	0 201	1 819	0.364	1.53	0 110	2.67			
NGC7469	1.	1.	1.	1.	1.	1.	1.	1.			
NGC1614	1.	1.	1.	1.	1.	1.	1.	1.			
NGC828	0.740	1.17	0.373	1.819	0.530	1.53	0.213	2.67			
ARP193	1.	1.	1.	1.	1.	1.	1.	1.			
UGC02369	1.	1.	1.	1.	1.	1.	1.	1.			
NGC0695	1.	1.	1.	1.	1.	1.	1.	1.			
M											
M											
U					_						
U						\vee K					
M		hean	n —				hes	am/tc	MAL A		
IF											
IR											11
IRAS10565	1.	1.	1.	1.	1.	1.	1.	1.			
VIIZW31	1.	1.	1.	1.	1.	1.	1.	1.		hlackh	DCL DCL
IRAS23365	1.	1.	1.	1.	1.	1.	1.	1.		DIACKD	

The IR flux corresponding to CS beams are calculated with $Flux_{beam} = Flux_{gal} \times R_{beam/gal} \times Aper$, where $Flux_{beam}$ is the IR flux with in the CS beam, $Flux_{gal}$ is the IRAS flux of the total galaxies, $R_{beam/gal}$ is the ratio of the flux inside CS beam to the flux of the whole galaxies measured in the Spitzer MIPS 24µm or 70 µm images, and Aper is the aperture correction factor measured on the Spitzer MIPS PSF of a 50K blackbody for the corresponding beamsizes.

Extended CS emission on the disk

Dense gas tracers

Molecule	Transitions J	Frequency (GHz)	E _{upper} (K)	$n_{\rm crit}(100 \text{ K})$ (cm ⁻³)	$A_{\rm ul}/\Gamma_{\rm ul}$ (100 K) (cm ⁻³)	$n_{\rm crit}(20 \text{ K})$ (cm ⁻³)	$A_{\rm ul}/\Gamma_{\rm ul}(20 {\rm K})$ (cm ⁻³)
	1→0	115.2711912	5.53	2.1×10 ²	2.1×10 ³	4.4×10 ²	2.2×10^3
	2→1	230.5379938	16.60	1.9×10^{3}	2.2×10^4	3.6×10 ³	2.3×10 ⁴
CO	3→2	345.7959762	33.19	6.8×10 ³	4.0×10^{4}	1.3×10 ⁴	3.5×10 ⁴
	4→3	461.0406784	55.32	1.6×10 ⁴	6.1×10 ⁵	3.0×10 ⁴	1.2×10^{6}
	5→4	576.2679118	82.97	3.2×10^4	2.4×10 ⁵	5.9×10 ⁴	2.4×10^{5}
	6→5	691.4731878	116.16	5.4×10 ⁴	3.1×10 ⁵	1.0×10^{5}	2.7×10^{5}
	7→6	806.6514744	154.87	8.6×10 ⁴	7.3×10 ⁵	1.5×10^{5}	1.1×10^{6}
	1→0	110.20135428	5.29	1.8×10 ²	1.8×10 ³	3.7×10 ²	1.9×10^{3}
¹³ CO	2→1	220.39868413	15.87	1.7×10^{3}	1.9×10^{4}	3.1×10 ³	2.0×10^4
	3→2	330.58796522	31.73	5.9×10 ³	3.5×10^4	1.1×10^{4}	3.4×10^4
	1→0	109.7821734	5.27	1.8×10 ²	1.9×10 ³	3.7×10 ²	1.9×10 ³
C ¹⁸ O	2→1	219.5603541	15.81	1.7×10^{3}	2.0×10^4	3.1×10 ³	1.9×10^{4}
	3→2	329.3305525	31.61	5.9×10 ³	3.0×10^{4}	1.1×10^{4}	3.4×10^{4}
	1→0	89.1885230	4.28	1.4×10 ⁴	2.3×10 ⁵	2.6 ×10 ⁴	1.8×10^{5}
Tree+	2→1	178.3750650	12.84	1.4×10^{5}	4.6×10 ⁶	2.6×10^5	3.4×10 ⁶
HCO ⁺	3→2	267.5576190	25.68	5.2×10 ⁶	4.2×10 ⁶	1.0×10^{6}	4.0×10^{6}
	4→3	356.7342880	42.80	1.3×10^{6}	2.1×10^2 2.1×10^3 4.4×10^2 1.9×10^3 2.2×10^4 3.6×10^3 6.8×10^3 4.0×10^4 1.3×10^4 1.6×10^4 6.1×10^5 3.0×10^4 3.2×10^4 2.4×10^5 5.9×10^4 5.4×10^4 3.1×10^5 1.0×10^5 8.6×10^4 7.3×10^5 1.5×10^5 1.8×10^2 1.8×10^3 3.7×10^2 1.7×10^3 1.9×10^4 3.1×10^3 5.9×10^3 3.5×10^4 1.1×10^4 1.8×10^2 1.9×10^3 3.7×10^2 1.7×10^3 2.0×10^4 3.1×10^3 5.9×10^3 3.0×10^4 1.1×10^4 1.4×10^4 2.3×10^5 2.6×10^5 5.2×10^6 4.2×10^6 1.0×10^6 1.3×10^6 5.8×10^7 2.5×10^6 5.5×10^3 6.2×10^4 8.3×10^3 5.3×10^4 5.2×10^5 7.9×10^4 1.9×10^5 1.4×10^6 3.0×10^5 4.8×10^5 2.7×10^6 7.7×10^5 9.9×10^5 6.1×10^6 1.8×10^6 1.7×10^6 1.2×10^7 3.1×10^6	4.0×10 ⁷	
	1→0	48.9909549	2.35	5.5×10 ³	6.2×10 ⁴	8.3×10 ³	4.7×10 ⁴
CS	2→1	97.9809533	7.05	5.3×10 ⁴	5.2×10 ⁵	7.9×10 ⁴	6.0×10^{5}
	3→2	146.9690287	14.11	1.9×10^{5}	1.4×10^{6}	3.0×10^{5}	1.1×10^{6}
	4→3	195.9542109	23.51	4.8×10 ⁵	2.7×10^{6}	7.7×10^{5}	3.3×10 ⁷
	5→4	244.9355565	35.27	9.9×10 ⁵	6.1×10 ⁶	1.8×10^{6}	7.5×10^{6}
	6→5	293.9120865	49.37	1.7×10^{6}	1.2×10^{7}	3.1×10 ⁶	1.1×10^{7}
	7→6	342.8828503	65.83	2.8×10^{6}	1.8×10^{8}	4.9×10^{6}	2.8×10^{8}

HCO⁺ deficient in extreme conditions??

Higher slopes for HCO⁺ (only) in galaxies. Gracia'- Carpio et al. 2006, 2008; Imanishi et al. 2007 Linear in Galactic cores, e.g., Ma et al. 2013 HCO⁺ is an ionic molecule. HCO⁺ + e \rightarrow CO + H

High radiation fields in ULIRGs

X-ray / Cosmic Rays => high n(e)

Papadopoulos et al. 2007

Shock environment

Shocks produce electron-rich outer layers

Xie et al. 1995

Why slopes matter? Different SFE Which gases are forming stars?

Theoretical works

I) Krumholz et al. (2007): $n_{crit} < n_{ave}$: slope ~ I.5 e.g., CO I-0 $n_{crit} > n_{ave}$: slope ~ I e.g., HCN I-0

2) Narayanan et al. (2008):Sub-thermal excitation.Slope decreases with n_{crit}.

3) Lada et al. (2012): Linear slope for lines with $n_{crit} > 10^4 \text{cm}^{-3}$ SFR is only related to M_{dense} . K-S law slope is related to M_{dense} fraction.

Low-J CO: gas not all forming stars. mid-&high-J CO: Mid-J CO: star forming gas. High-J CO: extra heating mechanism.

Greve et al. 2014

Lu et al. 2014

DeMoGas

http://demogas.astro.noa.gr/

- HerCULES sample
- Full CO ladders (from J=1-0 to 13-12)
- ¹³CO ladders
- Multiple molecules (HCN/HCO+/CS/etc.)
- Multiple transitions
- The most complete dataset of dense gas tracers in nearby U/LIRGs.

Manolis Xilouris

Ioanna Leonidaki Padelis Papadopoulos Paul van der Werf Thomas Greve Zhi-Yu Zhang Panos Boumis Alceste Bonanos