

#### Extreme Jet Ejections from the Black Hole X-ray Binary V404 Cygni: The Unique (Sub-) Millimetre Perspective

#### Alex Tetarenko University of Alberta

J.C.A. Miller-Jones (ICRAR), G.R. Sivakoff & E. Rosolowsky (UAlberta), on behalf of a Larger X-ray Binary Collaboration



EAO Seminar February 16, 2016



#### Black Hole X-ray Binaries (BHXBs)

- Compact object accreting from lessevolved companion
- Two phases:
   Quiescence
   Outburst
- Jet best detected during outburst
- Outbursts vary on short timescales



Adapted from Fender, 2000





#### **Outburst and Jet Behaviour**





















# V404 Cygni

d=2.39 +/- 0.14 kpc

 $M_{BH} = 7.15 + - 0.35 M_{\odot}$ 

E(B-V)=0.1

- Prolonged quiescent period of 26 yrs.
- Well determined system parameters
- Low optical extinction
- Parallax distance



#### Alex Tetarenko – EAO Seminar Feb 2016

Credit: R. Hynes

P<sub>orb</sub>= 6.5 days

i=80.1 +/- 5.1 degrees

K0

sub-giant

### June 2015 Outburst

- On June 15, 2015 X-ray flaring activity detected by Swift BAT, MAXI and INTEGRAL
- Extraordinary mutli-wavelength flaring activity followed
- Brightest BHXB outburst in the past decade







### June 2015 Outburst



http://deneb.astro.warwick.ac.uk/phsaap/v404cyg/data/





#### The "Golden Data Set"





#### Unprecedented multi-wavelength view





### "Golden Data Set" Part 1

#### Tetarenko et al., 2016, in prep



- Flares reach extremely bright flux levels
- Lower v are delayed, smoothed version
  - of higher v
- (sub-)mm
   substructure not
   visible in cm
   emission





## Light Curve Modeling



- Simultaneously fit all 6 frequencies with MCMC algorithm
- Light curves well described by van der Laan Models
- 13 ejection events!





- We can model each ejection with,
  - Ejection time
  - Peak Flux
  - Expansion speedOptical depth/p
- We adopt linear expansion model + deceleration



**Preliminary Results** 

v<sub>exp</sub>~ 0.01-0.05 c





- We can model each ejection with,
  - Ejection time
  - Peak Flux
  - Expansion speedOptical depth/p
- We adopt linear expansion model + deceleration

#### **Preliminary Results**



 $\tau \sim 1.0-2.0$ 





- We can model each ejection with,
  - Ejection time
  - Peak Flux
  - Expansion speed
    Optical depth/p
- We adopt linear expansion model + deceleration





p ~ 1.0-3.0





- Estimate ejecta size scales
  - Initial radius at moment of particle injection
  - Track changes as a function of time and frequency



#### Initial Radii ~ 10<sup>5</sup> R<sub>G</sub>



Alex Tetarenko – EAO Seminar Feb 2016



#### **Preliminary Results**

### Modeling the Compact Jet

Could the jet spectral break occur between C ulletand K band?  $v_{break} \sim 15 \text{ GHz}$ Flux Density K band (18-26 GHz) SMA (230 GHz) C band (5-8 GHz) Frequency Alex Tetarenko – EAO Seminar Feb 2016

### Importance of the mm/sub-mm

- Substructure in mm/sub-mm light curves critical in modeling
- Why not include JCMT data?
- Evolution in C band?

Tetarenko et al., 2016, in prep





#### "Golden Data Set" Part 2

#### **VLBA** Movie

Preliminary Results Tetarenko et al., 2016, in prep







# VLBA Imaging

- Imaging and selfcalibration procedure of
   > 100 individual frames
- Astrometric Measurments:
  - Proper Motion
  - Bulk Jet Speed
  - Ejection Times
- VLBA ejection times coincide with those inferred from our modeling!





#### Tetarenko et al., 2016, in prep

Preliminary measurements suggest atypical behavior of some ejecta



### Combining the Two

- Unique probes of jet speed, structure and size scale
- This is the first time expansion speeds and proper motions of ejecta have been simultaneously measured!







# **Relationship to X-ray Emission**



 Predicted ejection times do not appear to correlate well with X-ray emission

 Does the X-ray probe synchrotron emission from jet or accretion flow emission?

Preliminary Results Tetarenko et al., 2016, in prep

Data from Rodriguez et al., 2015





### **Relationship to Optical Emission**

#### Mariko Kimura, et al. 2015



- Dip-type oscillations are seen at optical wavelengths.
- Same type of oscillations seen in GRS 1915+105, associated with repeated ejection and refilling of inner disk.





### Comparing to GRS 1915+105

 Only other source to show repeated multiwavelength flaring

#### **Similarities**

- Enter high luminosity state
- Repeated flaring events
- Low frequencies delayed versions of high frequencies

#### **Differences**

- Rise and decay times similar at all frequencies
- No jet ejecta resolved with VLBA
- GRS 1915+105 in outburst state for last 25yrs, V404 transient





#### High Time Resolution Measurements

- Our team has developed a custom timing script for interferometric data that runs in CASA
- Produces light curves on user specified time bin
- Many customizable options:
  - UV or Image plane
  - Object Detection
  - Fixed Target Position
  - And many more...

https://github.com/Astroua/AstroCompute Scripts

#### Tetarenko & Koch et al., 2016, in prep







### Summary

- Analysis is ongoing
- Simultaneous multi-wavelength coverage essential to unlocking complicated physics.
- Rapid response and specialized observing techniques, like sub-arrays and VLBI, make this possible.
- mm/sub-mm data provides a unique, more detailed view of the jet compared to cm.

#### Thank you!



