

Using Herschel and gravitational lensing to unveil extreme star-formation at z>2

Julie Wardlow

Centre for Extragalactic Astronomy, Durham University

with Shane Bussmann, Jae Calanog, Alex Conley, Asantha Cooray, Francesco De Bernardis, Rui Marques Chaves, Paloma Martínez Navajas, Ismael Perez Fournon, Dominik Riechers & HerMES

What? Example: SDP.81 discovered by Herschel, imaged by ALMA

What?

Example: SDP.81 discovered by Herschel, imaged by ALMA

Since March:

Vlahakis et al. 2015 Swinbank et al. 2015 Rybak et al. 2015a,b Hatsukade et al. 2015 Dye et al. 2015 Tamura, et al. 2015 Wong et al. 2015 Inoue et al. 2016 Hezaveh et al. 2016

What?

Example: SDP.81 discovered by Herschel, imaged by ALMA

Since March:

Vlahakis et al. 2015 Swinbank et al. 2015 Rybak et al. 2015a,b Hatsukade et al. 2015 Dye et al. 2015 Tamura, et al. 2015 Wong et al. 2015 Inoue et al. 2016 Hezaveh et al. 2016

What?

Example: SDP.81 discovered by Herschel, imaged by ALMA

Why? HST UDF fly through: distant galaxies are very different to local galaxies

From Mark Swinbank

Why?

~50% of stellar & AGN emission is dust reprocessed

Dole et al. 2006

Massive ellipticals formed early in the Universe

Toft et al. 2014

Why?

Massive ellipticals formed early; SMGs are massive & early

Hickox, JW et al. 2012 Simpson, JW et al. 2014

Gravitationally lensed DSFGs

Julie Wardlow

Why?

Dusty star formation: a crucial phase of galaxy evolution?

Hickox, JW et al. 2012 Simpson, JW et al. 2014

Gravitationally lensed DSFGs

Julie Wardlow

Negative K-correction: submm is visible to high-z

Arp 220 redshifted:

LESS: 300 hours on APEX (870µm)

Gravitational Lensing

- Background galaxy: flux boost
- Background galaxy: spatial resolution boost
- Foreground galaxy: mass profile
- Cosmology: numbers and distribution of lensing

Lensing: the foreground mass

Total mass profile

(multiple lensed galaxies)

Gravitational lensing: cosmology

Far-IR number counts are steep at the bright end: very luminous DSFGs are very rare

Gravitationally lensed DSFGs

Julie Wardlow

HerMES: ~380 deg² extragalactic submm survey

HerMES lens candidates: S500>100mJy

Candidates: ~0.15 deg⁻²

Wardlow et al. 2013

HerMES lens candidates S500>100mJy & no blazars or local spirals

HerMES lens candidates S500>100mJy & no blazars or local spirals

Candidates: ~0.15 deg⁻²

Wardlow et al. 2013

Lensed SMGs are easily distinguished from lenses

HerMES Boötes image

1.3°

Herschel 250, 350, 500 μm

HerMES Boötes image

1.3°

60‴

HerMES Boötes image

A sample of Herschel lens systems

Lensed HATLAS12–00 @z=3.3: gas, stars & dust are offset

Fu, JW et al. 2012

HATLASJ1429 @z=1.03: HST Grism for optical line ratios

Timmons, JW et al. 2014 See also Messias et al. 2014

HLock01: a HerMES source lensed by a group

Magnification: $\mu = 10.9 \pm 0.7$

Gavazzi et al. 2011

Gravitationally lensed DSFGs

Julie Wardlow

HLock01: a HerMES source lensed by a group

Gravitationally lensed DSFGs

Julie Wardlow

Model of lensed SMGs agrees with observed number

Components

- ACDM cosmology: $\Omega_{M} = 0.27$, $\Omega_{\Lambda} = 0.73$, $H_{0} = 71$ km s⁻¹ Mpc⁻¹
- NFW or SIS foreground mass profiles
- Sheth & Tormen distribution of foreground masses
- Béthermin et al. N(z) for SMGs

The model

- Calculate the fraction of the sky that is strongly (μ >2) lensed = f_{μ}
- Use f_{μ} to calculate lensing probability
- counts
- Use MCMC to fit to the total observed HerMES number counts
- Number counts of lensed SMGs are predicted

Wardlow et al. 2013

Other predictions: candidates have ~35–75% fidelity

Blazars & spirals removed

Other predictions: candidates have ~35–75% fidelity

Blazars & spirals removed

Other predictions: magnification factor

The lenses are fainter and higher z than other surveys

Bussmann, JW et al. 2013

Gravitationally lensed DSFGs

Julie Wardlow

IR magnification factors are typically ~2–10

Adapted from Bussmann, JW et al. 2013

H-ATLAS: The first 5 lenses are similar to unlensed SMGs

Negrello et al. 2010 Negrello, JW et al. 2014

Lensing probes smaller & fainter optical systems than classical SMGs

The submm emission is typically more magnified & smaller than the NIR

Submm colours are a proxy for redshift

'Red' SPIRE colours indicate z≈4

Dowell, JW et al. 2014

HFLS3: z=6.3 starburst

Riechers, JW et al. 2013

Julie Wardlow

Some lens candidates also have very red colours

Wardlow et al. 2013

Julie Wardlow

Summary

Wide-area, submm surveys can identify strongly lensed dusty star-forming galaxies by simply selecting the brightest sources....

Lensing is revealing the complicated structures & conditions in z>2 galaxies.

... and they are very efficient at finding lensed galaxies.

Typical magnifications are factors of \sim 5–10 and are often higher in the FIR than NIR.

