Remotely judging the weather on MK
“How does Gemini do it?”

Michael Pohlen
Gemini Observatory
Science Operations Specialist
What is weather?

1.) Astronomical 'weather'

2.) Telescope 'weather'
What is weather?

1.) Astronomical 'weather'
 - Cloud Cover (CC)
 - Seeing (IQ)
 - Water vapour (WV)
 - Background (BG)

2.) Telescope 'weather'
What is weather?

1.) Astronomical 'weather'
- Cloud Cover (CC)
- Seeing (IQ)
- Water vapour (WV)
- Background (BG)

2.) Telescope 'weather'
- Humidity/fog/valley clouds
- Low/rain clouds (above or maybe close to dome)
- Ice, snow, sleet, ...
- Dust
- Wind
Our approach in going remote?

- replace any 'going outside' with new tools
- our goal: new tools are as good or better as before
- not goal: upgrade all of our old tools
How do we sense it?

➲ **Cloud Cover:**

- **Ext. tools:**
 - CFHTs ASIVA, skyprobe, cloudCam, Kecks cosmic camera

- **Our old tools:**
 - guide counts
 - only rough estimate unless clear patch in between
 - need to disentangle seeing effects
 - quick analysis pipeline (QAP) for GMOS img → not fully comm.
 - check outside: eye → takes time to adapt
 - NVG → thin, slow moving clouds hard to spot
Our old tools:
 - guide counts
 → only rough estimate unless clear patch in between
 → need to disentangle seeing effects
 - quick analysis pipeline (QAP) for GMOS img → not fully comm.
 - check outside: eye → takes time to adapt
 NVG → thin, slow moving clouds hard to spot

Our new tools:
 - 5 cloudCams (N/S/W/E and South-up)
How do we sense it?

➲ Cloud Cover:

- Ext. tools:
 - CFHTs ASIVA, skyprobe, cloudCam, Kecks cosmic camera

- Our old tools:
 - guide counts
 - only rough estimate unless clear patch in between
 - need to disentangle seeing effects
 - quick analysis pipeline (QAP) for GMOS img
 - check outside: eye
 - takes time to adapt
 - NVG
 - thin, slow moving clouds hard to spot

- Our new tools:
 - 5 cloudCams (N/S/W/E and South-up)

CloudCam movies are even better than being outside
How do we sense it?

Image Quality:

- Ext. tools:
 - CFHTs tower DIMM
 - ask around (phone, Slack)

- Our old tools:
 - calibrated guider (Altair)
 - uncalibrated guiders → rough idea + trend
 - measurements (e.g. QAP) on images/spectra → delivered IQ

- Our new tools:
 - none
 - should we put our measurements on webpage?
How do we sense it?

Water Vapour:

- Ext. tools:
 - CSO 225 GHz corrected
 - if CSO down, we use JCMT

- Our old tools:
 - none

- Our new tools:
 - none
How do we sense it?

Background:

- Ext. tools:
 - none

- Our old tools:
 - calculated from model (sun, moon, target)
 - quick analysis pipeline (QAP) for GMOS img → not fully comm.

- Our new tools:
 - none
How do we sense it?

➲ Humidity/fog/valley clouds:

- Ext. tools:
 - rel. humidity measurements of other telescopes (CFHT/UKIRT)

- Our old tools:
 - check outside: touch metal → very easy to spot condensation
 flashlight → very efficient to spot fog
 - check in dome: touch metal
- **Our old tools:**
 - check outside: touch metal → very easy to spot condensation
 flashlight → very efficient to spot fog
 - check in dome: touch metal

- **Our new tools:**
 - 2 new humidity sensors to E/W of our support building
 - East cloudCam is actually HiloCam → rolling in clouds easily seen
 - fogCamera plus flashlight (East) → still able to spot East fog
How do we sense it?

Humidity/fog/valley clouds:

- **Ext. tools:**
 - rel. humidity measurements of other telescopes (CFHT/UKIRT)

- **Our old tools:**
 - check outside: touch metal → very easy to spot condensation
 - flashlight → very efficient to spot fog
 - check in dome: touch metal

- **Our new tools:**
 - 2 new humidity sensors to E/W of our support building
 - East cloudCam is actually HiloCam → rolling in clouds easily seen
 - fogCamera plus flashlight (East) → still able to spot East fog

East fog covered pretty well, but humidity (condensation) not so
How do we sense it?

- **Low/rain clouds:**
 - Ext. tools:
 - humidity sensor on top of CFHT dome
 - ask around (phone, Slack)
 - Our old tools:
 - check outside: twilight → easy to look for mammatus clouds
 flashlight → very hard to spot clouds above dome
 - twilight: roofCam
How do we sense it?

Low/rain clouds:

- **Ext. tools:**
 - humidity sensor on top of CFHT dome
 - ask around (phone, Slack)

- **Our old tools:**
 - check outside: twilight → easy to look for mammatus clouds
 - flashlight → very hard to spot clouds above dome
 - twilight: roofCam

- **Our new tools:**
 - 4 precipitation sensors on our support building
 - twilight: fogCam, UH88Cam, CFHTCam
 - night: 5 cloudCams
How do we sense it?

Low/rain clouds:

- **Ext. tools:**
 - humidity sensor on top of CFHT dome
 - ask around (phone, Slack)

- **Our old tools:**
 - check outside: twilight → easy to look for mammatus clouds
 - flashlight → very hard to spot clouds above dome
 - twilight: roofCam

- **Our new tools:**
 - 4 precipitation sensors on our support building
 - twilight: fogCam, UH88Cam, CFHTCam
 - night: 5 cloudCams

rare; warning less good, but start even better detected
How do we sense it?

Ice, snow, sleet ...:

- **Ext. tools:**
 - ice road monitor at UKIRT
 - ask around (phone, Slack)

- **Our old tools:**
 - check outside: ice on railing (~3mm) → linked to ice on dome
 - check outside: ice on road → decision to evacuate
 - dayCrew inspects dome → only M-F and start of night
 - twilight: roofCam
Ice, snow, sleet ...:

- **Ext. tools:**
 - ice road monitor at UKIRT
 - ask around (phone, Slack)

- **Our old tools:**
 - check outside: ice on railing (~3mm) → linked to ice on dome
 - check outside: ice on road → decision to evacuate
 - dayCrew inspects dome → only M-F and start of night
 - twilight: roofCam

- **Our new tools:**
 - snow and ice sensor on our support building
 - twilight: UH88Cam, CFHTCam
 - night: fogCam + flashlight onto E.-weather station
 UH88Cam + fogCam flashlight
How do we sense it?

- Ice, snow, sleet ...

 - Ext. tools:
 - ice road monitor at UKIRT
 - ask around (phone, Slack)

 - Our old tools:
 - check outside: ice on railing (≈3mm) → linked to ice on dome
 - check outside: ice on road → decision to evacuate
 - dayCrew inspects dome → only M-F and start of night
 - twilight: roofCam

 - Our new tools:
 - snow and ice sensor on our support building
 - twilight: UH88Cam, CFHTCam
 - night: fogCam + flashlight onto E.-weather station
 - UH88Cam + fogCam flashlight

harder to spot, so more conservative, but crew safe
How do we sense it?

Dust:

- Ext. tools:
 - none

- Our old tools:
 - particle sensor → only inside, uncalibrated (see Sunny's talk)
 - check outside: particles (thick) in flashlight
 - check outside: 'dust in mouth' → time to close
 - check in dome: flashlight, wiped CDROM
Dust:

- **Ext. tools:**
 - none

- **Our old tools:**
 - particle sensor → only inside, uncalibrated (see Sunny's talk)
 - check outside: particles (thick) in flashlight
 - check outside: 'dust in mouth' → time to close
 - check in dome: flashlight, wiped CDROM

- **Our new tools:**
 - fogCam + flashlight
 - (domeCams + light)
How do we sense it?

Dust:

- **Ext. tools:**
 - none

- **Our old tools:**
 - particle sensor → only inside, uncalibrated (see Sunny's talk)
 - check outside: particles (thick) in flashlight
 - check outside: 'dust in mouth' → time to close
 - check in dome: flashlight, wiped CDROM

- **Our new tools:**
 - fogCam + flashlight
 - (domeCams + light)

not very well at summit, worse from down here
How do we sense it?

Wind:

- Ext. tools:
 - CFHT weather tower, UKIRT windspeed

- Our old tools:
 - anemometer inside dome (at M1/M2)

- Our new tools:
 - none
Conclusions

➲ No need to be at summit (as the others proved well before)
➲ CloudCam movies beats being up there
➲ CloudCam movies show ASIVA not 100% but ~98%
➲ Need to be more conservative
 ● more downtime, less pushing limits
 ● but, most timeloss is bad weather data anyway
➲ Dust monitoring is weakest link
➲ Leaky shutter plus run-off requires tricky remote dome drain