Remotely judging the weather on MK *"How does Gemini do it?"*

Michael Pohlen Gemini Observatory Science Operations Specialist

What is weather?

- 1.) Astronomical 'weather' \bigcirc
- 2.) Telescope 'weather'

What is weather?

1.) Astronomical 'weather'

- Cloud Cover (CC)
- Seeing (IQ)
- Water vapour (WV)
- Background (BG)
- 2.) Telescope 'weather'

What is weather?

1.) Astronomical 'weather'

- Cloud Cover (CC)
- Seeing (IQ)
- Water vapour (WV)
- Background (BG)
- 2.) Telescope 'weather'
 - Humidity/fog/valley clouds
 - Low/rain clouds (above or maybe close to dome)
 - Ice, snow, sleet, ...
 - Dust
 - Wind

Our approach in going remote?

- replace any 'going outside' with new tools
- our goal: new tools are as good or better as before
- not goal: upgrade all of our old tools

Cloud Cover:

- Ext. tools:
 - CFHTs ASIVA, skyprobe, cloudCam, Kecks cosmic camera
- Our old tools:
 - guide counts
 - \rightarrow only rough estimate unless clear patch in between
 - \rightarrow need to disentangle seeing effects
 - quick analysis pipeline (QAP) for GMOS img \rightarrow not fully comm.
 - check outside: eye \rightarrow takes time to adapt
 - NVG \rightarrow thin, slow moving clouds hard to spot

- Our old tools:
 - guide counts

- \rightarrow only rough estimate unless clear patch in between
- \rightarrow need to disentangle seeing effects
- quick analysis pipeline (QAP) for GMOS img \rightarrow not fully comm.
- check outside: eye \rightarrow takes time to adapt
 - $NVG \rightarrow thin$, slow moving clouds hard to spot
- Our new tools:
 - 5 cloudCams (N/S/W/E and South-up)

Cloud Cover:

- Ext. tools:
 - CFHTs ASIVA, skyprobe, cloudCam, Kecks cosmic camera
- Our old tools:
 - guide counts
 - \rightarrow only rough estimate unless clear patch in between
 - \rightarrow need to disentangle seeing effects
 - quick analysis pipeline (QAP) for GMOS img \rightarrow not fully comm.
 - check outside: eye \rightarrow takes time to adapt NVG \rightarrow thin, slow moving clouds hard to spot
- Our new tools:
 - 5 cloudCams (N/S/W/E and South-up)

CloudCam movies are even better than being outside

Image Quality:

- Ext. tools:
 - CFHTs tower DIMM
 - ask around (phone, Slack)
- Our old tools:
 - calibrated guider (Altair)
 - uncalibrated guiders \rightarrow rough idea + trend
 - measurments (e.g. QAP) on images/spectra \rightarrow delivered IQ
- Our new tools:
 - none
 - should we put our measurements on webpage?

Water Vapour:

- Ext. tools:
 - CSO 225 GHz corrected
 - if CSO down, we use JCMT
- Our old tools:
 - none
- Our new tools:
 - none

Background:

- Ext. tools:
 - none
- Our old tools:
 - calculated from model (sun, moon, target)
 - quick analysis pipeline (QAP) for GMOS img \rightarrow not fully comm.
- Our new tools:
 - none

Humidity/fog/valley clouds:

- Ext. tools:
 - rel. humidity measurements of other telescopes (CFHT/UKIRT)
- Our old tools:
 - check outside: touch metal \rightarrow very easy to spot condensation flashlight \rightarrow very efficient to spot fog
 - check in dome: touch metal

- Our old tools:
 - check outside: touch metal \rightarrow very easy to spot condensation flashlight \rightarrow very efficient to spot fog
 - check in dome: touch metal
- Our new tools:
 - · 2 new humidity sensors to E/W of our support building
 - East cloudCam is actually HiloCam \rightarrow rolling in clouds easily seen
 - fogCamera plus flashlight (East) \rightarrow still able to spot East fog

Humidity/fog/valley clouds:

- Ext. tools:
 - rel. humidity measurements of other telescopes (CFHT/UKIRT)
- Our old tools:
 - check outside: touch metal \rightarrow very easy to spot condensation flashlight \rightarrow very efficient to spot fog
 - check in dome: touch metal
- Our new tools:
 - · 2 new humidity sensors to E/W of our support building
 - East cloudCam is actually HiloCam \rightarrow rolling in clouds easily seen
 - fogCamera plus flashlight (East) \rightarrow still able to spot East fog

East fog covered pretty well, but humidity (condensation) not so

Low/rain clouds:

- Ext. tools:
 - humidity sensor on top of CFHT dome
 - ask around (phone, Slack)
- Our old tools:
 - check outside: twilight \rightarrow easy to look for mammatus clouds flashlight \rightarrow very hard to spot clouds above dome
 - twilight: roofCam

Low/rain clouds:

- Ext. tools:
 - humidity sensor on top of CFHT dome
 - ask around (phone, Slack)
- Our old tools:
 - check outside: twilight \rightarrow easy to look for mammatus clouds flashlight \rightarrow very hard to spot clouds above dome
 - twilight: roofCam
- Our new tools:
 - 4 percipitation sensors on our support building
 - twilight: fogCam, UH88Cam, CFHTCam
 - night: 5 cloudCams

Low/rain clouds:

- Ext. tools:
 - humidity sensor on top of CFHT dome
 - ask around (phone, Slack)
- Our old tools:
 - check outside: twilight \rightarrow easy to look for mammatus clouds flashlight \rightarrow very hard to spot clouds above dome
 - twilight: roofCam
- Our new tools:
 - 4 percipitation sensors on our support building
 - twilight: fogCam, UH88Cam, CFHTCam
 - night: 5 cloudCams

rare; warning less good, but start even better detected

Ice, snow, sleet ...:

- Ext. tools:
 - ice road monitor at UKIRT
 - ask around (phone, Slack)
- Our old tools:
 - check outside: ice on railing (~3mm) \rightarrow linked to ice on dome
 - check outside: ice on road \rightarrow decision to evacuate
 - dayCrew inspects dome \rightarrow only M-F and start of night
 - twilight: roofCam

Ice, snow, sleet ...:

- Ext. tools:
 - ice road monitor at UKIRT
 - ask around (phone, Slack)
- Our old tools:

- check outside: ice on railing (~3mm) \rightarrow linked to ice on dome
- check outside: ice on road \rightarrow decision to evacuate
- dayCrew inspects dome \rightarrow only M-F and start of night
- twilight: roofCam
- Our new tools:
 - snow and ice sensor on our support building
 - twilight: UH88Cam, CFHTCam
 - night: fogCam + flashlight onto E.-weather station

UH88Cam + fogCam flashlight

Ice, snow, sleet ...:

- Ext. tools:
 - ice road monitor at UKIRT
 - ask around (phone, Slack)
- Our old tools:
 - check outside: ice on railing (~3mm) \rightarrow linked to ice on dome
 - check outside: ice on road \rightarrow decision to evacuate
 - dayCrew inspects dome \rightarrow only M-F and start of night
 - twilight: roofCam
- Our new tools:
 - snow and ice sensor on our support building
 - twilight: UH88Cam, CFHTCam

GEMINI OBSERVATOR

- night: fogCam + flashlight onto E.-weather station
 - UH88Cam + fogCam flashlight

harder to spot, so more conservative, but crew safe

 Exploring the Universe, Sharing its Wonders

Dust:

- Ext. tools:
 - none
- Our old tools:
 - particle sensor \rightarrow only inside, uncalibrated (see Sunny's talk)
 - check outside: particles (thick) in flashlight
 - check outside: 'dust in mouth' \rightarrow time to close
 - check in dome: flashlight, wiped CDROM

Dust:

- Ext. tools:
 - none
- Our old tools:
 - particle sensor \rightarrow only inside, uncalibrated (see Sunny's talk)
 - check outside: particles (thick) in flashlight
 - check outside: 'dust in mouth' → time to close
 - check in dome: flashlight, wiped CDROM
- Our new tools:
 - fogCam + flashlight
 - (domeCams + light)

Dust:

- Ext. tools:
 - none
- Our old tools:
 - particle sensor \rightarrow only inside, uncalibrated (see Sunny's talk)
 - check outside: particles (thick) in flashlight
 - check outside: 'dust in mouth' → time to close
 - check in dome: flashlight, wiped CDROM
- Our new tools:
 - fogCam + flashlight
 - (domeCams + light)

not very well at summit, worse from down here

Wind:

- Ext. tools:
 - CFHT weather tower, UKIRT windspeed
- Our old tools:
 - anemometer inside dome (at M1/M2)
- Our new tools:
 - none

Conclusions

- No need to be at summit (as the others proved well before)
- CloudCam movies beats being up there
- CloudCam movies show ASIVA not 100% but ~98%
- Need to be more conservative
 - more downtime, less pushing limits
 - but, most timeloss is bad weather data anyway
- Dust monitoring is weakest link
- Leaky shutter plus run-off requires tricky remote dome drain

