Evidence of Cloud-Cloud Collision in S235 Complex

Speaker: En Chen
Collaborators: Prof. Yu Gao, Xuejian Jiang, Yan Sun, Roger Lin, Hongjun Ma, Xiaolong Wang, Qianru He
2017. 02. 13
1. Background
2. Collision evidence in S235
3. Summary
4. Future work
Basic scenario of cloud-cloud collision introduced by Habe & Ohta (1992)

1. Background

Credit: Torii et al. 2015
Examples of collision

Table 1. Comparisons between the cloud-cloud collision regions.

<table>
<thead>
<tr>
<th>Name</th>
<th>cloud mass</th>
<th>column density</th>
<th>relative velocity</th>
<th>complementary</th>
<th>bridge</th>
<th>cluster</th>
<th>number of</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCW 38</td>
<td>(20, 3)</td>
<td>(10, 1)</td>
<td>12</td>
<td>no</td>
<td>yes</td>
<td>~0.1</td>
<td>~20</td>
<td>[1]</td>
</tr>
<tr>
<td>NGC 3603</td>
<td>(70, 10)</td>
<td>(10, 10)</td>
<td>15</td>
<td>no</td>
<td>yes</td>
<td>~2</td>
<td>~30</td>
<td>[2]</td>
</tr>
<tr>
<td>Westerlund 2</td>
<td>(90, 80)</td>
<td>(20, 2)</td>
<td>16</td>
<td>yes</td>
<td>yes</td>
<td>~2</td>
<td>~4</td>
<td>[3, 4]</td>
</tr>
<tr>
<td>DBS2003 179</td>
<td>(200, 200)</td>
<td>(8, 5)</td>
<td>20</td>
<td>yes</td>
<td>no</td>
<td><1</td>
<td>>10</td>
<td>[5]</td>
</tr>
<tr>
<td>ONC (M 42)</td>
<td>(20, 3)</td>
<td>(20, 1)</td>
<td>~7</td>
<td>yes</td>
<td>no</td>
<td><1</td>
<td>~10</td>
<td>[6]</td>
</tr>
<tr>
<td>ONC (M 43)</td>
<td>(0.3, 0.2)</td>
<td>(6, 2)</td>
<td>~7</td>
<td>yes</td>
<td>yes</td>
<td>~0.2</td>
<td>1</td>
<td>[7]</td>
</tr>
<tr>
<td>RCW 120</td>
<td>(50, 4)</td>
<td>(3, 0.8)</td>
<td>20</td>
<td>no</td>
<td>yes</td>
<td>~0.6</td>
<td>1</td>
<td>[8]</td>
</tr>
<tr>
<td>N159W-South</td>
<td>(9, 6)</td>
<td>(10, 10)</td>
<td>~8</td>
<td>no</td>
<td>no</td>
<td><0.2</td>
<td>1</td>
<td>[9]</td>
</tr>
<tr>
<td>N159E-Papillon</td>
<td>(5, 7, 8)</td>
<td>(4, 4, 6)</td>
<td>~9</td>
<td>yes</td>
<td>yes</td>
<td>~0.3</td>
<td>1</td>
<td>[10]</td>
</tr>
<tr>
<td>M 20</td>
<td>(1, 1)</td>
<td>(1, 1)</td>
<td>7.5</td>
<td>yes</td>
<td>yes</td>
<td>~1</td>
<td>0</td>
<td>[11]</td>
</tr>
<tr>
<td>L 1188</td>
<td>(1.2, 2.7)</td>
<td>(1.1, 2)</td>
<td>~2</td>
<td>no</td>
<td>yes</td>
<td>~1</td>
<td>1</td>
<td>This work</td>
</tr>
<tr>
<td>S 235</td>
<td>(10, 10)</td>
<td>(3, 3)</td>
<td>5</td>
<td>yes</td>
<td>yes</td>
<td>~1</td>
<td>1</td>
<td>This work</td>
</tr>
</tbody>
</table>

2~20 km/s

Super star clusters

Typical HII regions

Low- or intermediate star formation
Color composite image of S235 complex.

Red: IRAC 8 μm
Green: IRAC 5.8 μm
Blue: IRAC 3.6 μm
CO, 13CO, C18O (1-0) are from PMO-14m

2. Collision Evidence in S235

Evidence 1: 5 km/s velocity separation.

Evidence 2: velocity bridge features
Evidence 3: colliding interface: velocity dispersion greater than 2 km/s
Evidence 4: complementary distribution in different wavelengths

- Grayscale: Spitzer 8 μm
- Grayscale: IPHAS Hα
- Grayscale: CGPS 1420 MHz

Traced ionized gas

Cavity
3. Summary

- 1. **5 km/s velocity separation** of blue-shifted and red-shifted cloud shows the colliding motion of S235-main and S235-AB.

- 2. **The velocity bridge features** connecting the two clouds indicate current colliding process.

- 3. **The colliding interface** can be traced by complementary morphology, large velocity gradients and high velocity dispersion of two clouds.

- 4. **The complementary distribution** between the two clouds and ionized gas support physical interaction between them.
4. Future work

- Propose JCMT CO 3-2 observations toward S235.
 mapping size: 30’ x 25’
 goal: probe the excitation condition and density properties of the colliding interface with LVG analysis.

- Star formation triggered by cloud-cloud collision.

![Graph and map showing star formation and cloud collision analysis.](image)