

Revealing the external gas inflow into Orion-KL region using JCMT

Zhiyuan Ren (NAOC)

合作者: 李菂、朱磊、岳楠楠、张其洲、 Diego Mardones、Alesso Traficante et al.

Outline

- Gas and dust morphology and temperature field
- One big question: explosive outflow vs ongoing high-mass YSO.

Orion KL: huge amount of cold dense gas

- Multiple filaments converging into the center (Orion hot core).
- Despite the heating from Trapezium stars and Orion hot core, the major fraction of Orion A still has noticeably low temperatures (20-25 K).
- * The central region has T~25 K, decreasing to 20 K at the outer part.
- ★ The cold gas has a total mass of ~1800 M_☉, which is huge compared to the Orion hot core (~40 M_☉).

• Density-profile: 3D structure modeling.

Orion: mass and density

- Compared with the typical filamental IRDC (e.g. G11.11, Wang et al. 2014), Orion A exhibits a similar but more compact structure, while the IRDC has little region with N(H₂) >10²⁴ cm⁻².
- ★ Orion and G11.11 have similar total masses. But the central clump in Orion A (cold gas) is much more massive than the gas clumps within G11.11 at similar spatial scales ⇒ tendency to form higher-mass stars.

Parameter	Average IRDC clump	G11-clump (3.6 kpc)	G11-cores	Ori-KL (if 3.6 kpc)	Ori8(L1641-N) (if 3.6kpc)
Size	0.05-0.7pc (3"-38")	0.75×0.4pc (40×25")	(0.02pc) (1.0")	0.07×0.05pc (4×3")	0.1×0.08pc (5×4")
T _{SED} (K)	22	15	10-20	25	24
Mass(M _☉)	10-10 ³	930	10-92	1800	10-40
N(H2)(cm ⁻²)	10 ²² -10 ²³	1.0×10 ²³	7.9×10 ²³	2.6×10 ²⁴	5×10 ²³
n(H2)(cm ⁻³)	10 ⁴ -10 ⁵	8×10 ⁴	7.5×10 ⁶	1.0×10′	2.0×10⁵
Line width	0.8-3.0	~1.0	~1.0	1-5	1.2
(km s ⁻¹)				(various lines)	

simulated extinction map

Orion KL: explosive outflow + ongoing massive star formation

An extended explosive outflow over a large opening angle, with strong shock emission. \checkmark central dense core MM1 : 6.7 GHz CH₃OH maser.

 \checkmark The outflow is originated almost from MM1, although not fully overlapped.

Wu & Liu et al. (2016)

Orion–KL: explosive outflow vs ongoing massive star formation

Inflow into Orion-KL hot core

Red shift excess towards east

• Redshifted gas indicating a likely inflow • $(dM/dt)_{inflow} = \Delta V L N(H_2) \sim 5 \times 10^{-4} M_{\odot}/year$

Conclusion

OMC-3 MMS-7 . inflow along the filament

Ren & LI (2016), to be submitted

G350.69-0.39 transfer flow in binary cores

RA offset (arcsec; J2000)

ov direction

-20

SiO 5-4

d_{flow} = 5.0

20

DEC offset (arcsec; J2000)

0

-20

•

(a)

20

H2CO 3-2

Chen, Ren, Qiu et al. (2016), ApJ

Orion KL 6 Expanding clump + inflow injection

Ren & LI (2017), to be submitted

• External Inflow into individual cores are observed in different types of star-forming regions.

"Even" the JCMT archive data can present useful information.

Gas expansion in Orion-KL

Outline

RA offset (arcsec; J2000)

Cumulated Core Mass Function: N(>m)

