The death throes

of massive stars

SOFIA WALLSTRÖM

Collaborators: S. Muller, J. H. Black, E. Lagadec, C. Biscaro, A. Tielens, I. Cherchneff, J. Rho, R. Oudmaijer, H. Olofsson, A. Zijlstra, and others

Seminar, EAO, May 23rd 2017

Massive stars

- Massive stars have a huge impact on their environment
 - Radiative
 - Mechanical
 - Chemical
- Generally explode as supernovae
 - As much energy as the Sun will produce over its lifetime

Nucleosynthesis

Stellar evolution

Yellow hypergiants

- $M_{init} = 20-40 M_{\odot}$
- Evolutionary stage linking Red Supergiants and Luminous Blue Variables
 - Timescale 10²⁻³ years
- High luminosity, large periodic mass-loss

The Yellow Void

- The yellow void
 - Unstable photosphere, g_{eff} close to zero
 - Star "bounces" off
 - Periodic mass-loss
- Few YHGs have extended circumstellar envelopes
 - IRC+10420
 - $M^{\bullet} > 10^{-4} M_{\odot}/yr$

The Fried Egg nebula

- IRAS 17163-3907
 - Distance 4 kpc
 - K I absorption lines in optical spectrum
 - Luminosity $5 \times 10^5 L_{\odot}$
- Large dust masses
 - − 0.04 M_☉ of warm dust in shells within 5"
 - 0.17 M_{\odot} in 50" ring

Image credit: Lagadec et al. 2011; Hutsemekers et al. 2013

APEX observations

- APEX observations
- CO 2-1 and 3-2
 - Beam 27" and 18"

APEX observations

- APEX observations
- CO 2-1 and 3-2
 - Beam 27" and 18"
- Complex asymmetric line shape
- Offset between CO and optical systemic velocity of ~50 km/s

ALMA ACA observations

- ALMA ACA CO 2-1
 - Beam 8" x 4"
- Asymmetric circumstellar structures
 - In contrast with symmetric dust observations at large (*Herschel* 50" ring) and small (VISIR 2" and 5" shells) scales
 - Bright spur corresponding to APEX emission

ALMA ACA: central spectrum

- Spectrum extracted at the star shows ISM, spur and broad plateau
- v_{sys} = 18 km/s
- Isotropic and constant mass-loss model finds:
 - $v_{exp} = 100 \pm 10 \text{ km/s}$
 - $M^{\bullet} = 8 \pm 1.5 \times 10^{-5} M_{\odot}/yr$
 - Timescale ~500 years

Feature: clumpy CO ring

- Integrating around v_{sys} we find a clumpy ring
- Velocity structure like an expanding torus
 - Equatorial ring, not spherically symmetric
- Similar features seen in SN 1987A, some supergiants
 - Possible evidence of a binary companion

Feature: clumpy CO ring

- Integrating around v_{sys} we find a clumpy ring
- Velocity structure like an expanding torus
 - Equatorial ring, not spherically symmetric
- Similar features seen in SN 1987A, some supergiants
 - Possible evidence of a binary companion

Feature: spur

- The brightest feature is a spur around +50-80 km/s
- Unidirectional
 - Timescale > 3700 years
- ¹²C/¹³C ratio of ~13 points to RSG origin, rather than ISM

Dust and gas

- Clumpy ring and spur match *Herschel* dust contours
 - T ~ 60 K, $\rm M_{dust}$ ~ 0.17 $\rm M_{\odot}$
 - Gas/dust ratio low, ~40
- For inner stellar wind
 - M_{dust} = 0.003 M_{\odot}
 - $M_{gas} \sim 0.04~M_{\odot}$
 - Gas mass probably underestimated, given the model assumptions

The future of the Fried Egg

- Follow-up with full ALMA array
 - Angular resolution 1.5"
 - Resolve inner ejecta and compare with dust observations
- New VISIR and SPHERE near-IR observations of the central emission

Evolved star -> supernova

- Massive stars explode as supernovae after ~10 million years
- Inject local ISM with freshly synthesised elements, kinetic energy... dust?
 - SN dust creation/ destruction still poorly known

Supernovae and dust

- Large dust masses at z>6
 - $-10^8 M_{\odot}$ in <1 billion years
- Supernovae
 - short timescale
 - refractory elements
 - Need ~0.1-1 M_{\odot} per SN
 - M_{dust} <10⁻² M_{\odot} post-explosion, up to 0.7 M_{\odot} in young SNRs
- How much SN dust survives
 the reverse shock?

Ambient Interstellar Medium

SNR Cassiopeia A

- Supernova remnant
 - About 330 years old
 - 3.4 kpc away
- Reverse shock processing the ejecta
- Cool dust: ~0.1 M_{\odot}
- Ro-vibrational CO
 - ~20 small (<0.8") knots</p>

Herschel observations

- Herschel PACS
 - Towards the brightest
 CO knot
- 6 rotational CO lines
- Also detected [O III]
- Excitation diagram + non-LTE modeling to derive physical conditions

Rotational CO results

- $N_{CO} = 5 \times 10^{17} \text{ cm}^{-2}$
- $n_{H2} = 10^{6-7} \text{ cm}^{-3}$
- T = 400 and 2000 K
- Post reverse shock
 - Broad lines ~400 km/s
- Heating by electron conduction
 - Balanced by evaporation from knot surface, timescale ~2000 years

Supernova dust survival

- Density of the knot will slow the reverse shock
 - cf. Fast Moving Knots (FMK):
 2000 km/s shock slowed to
 200 km/s in a knot 100x denser
 than surrounding medium
 - Slowed shock may sputter
 <50% of SN dust
 - Warm and dense post-shock region conducive to grain growth

Galactic chemical evolution

- Stars affect their galaxy
 - Nucleosynthesis products, dust, kinetic energy
- Over time, the metallicity of the galaxy evolves
 - Want to study over the age of the Universe
 - Distant galaxies quickly become too faint to observe in emission

Molecular absorption at high z

- High-z galaxies lensing more distant quasars
 - Molecular absorption, undiluted by distance
 - Study rare isotopologues in distant galaxies
 - Absorption depth proportional to line opacity
 - Direct measurement of isotopic ratios (if lines optically thin)

PKS 1830-211 lensed by MA0.89 at z=0.89

Image credit: Australia Telescope National Facility, CSIRO

Molecular absorber MA0.68

- Absorber at z=0.68, lensing the blazar B0218+357
- Two images 0.3" apart, absorption only for image A
- MA0.68 is nearly face-on spiral galaxy
 - Absorption 2kpc from centre

Image from Biggs et al. 2001

PdBI absorption observations

- 3mm band, observed as backup 2005-2008
- Two blazar images not spatially resolved
 - HCO⁺ and HCN saturated, but don't reach zero
 - Need to take image flux ratio into account

Fitting line profiles

- Fit common 3-gaussian profile to all lines
- Measure isotopic ratios from optically thin lines
 - ³²S/³⁴S, ¹³C/¹⁵N, ¹³C/¹⁸O and upper limit on ¹⁸O/¹⁷O
- Estimate ¹²C/¹³C ratio, and hence ¹⁴N/¹⁵N and ¹⁶O/¹⁸O

Isotopic ratios

- All ratios similar to MA0.89, and some starbursts
 - ¹²C/¹³C and ³²S/³⁴S similar to
 Milky Way at 2 kpc
 - All other ratios differ by at least factor of 2
 - MA0.68 enriched in less common isotope
 - Consistent with enrichment mainly by massive stars
 - High ¹⁸O and ¹⁵N, for example

Chemical evolution models

- Each generation of stars enriches the galaxy
 - Massive stars enrich on shorter timescales, some 10 million years
- Kobayashi et al. 2011
 - Isotopic abundances
 - Star formation rate, star formation history, gas fraction, initial mass function, evolution of different stars...

in the galactic bulge

Further study

- More data on MA0.68 from ALMA
- ALMA proposal to study C fractionation in MA0.89
- Other sources
 - Only handful of redshifted molecular absorbers
 - Searches for new absorbers at z>1, so far unsuccessful

The death throes of massive stars

- Massive stars impact their surroundings through
 - Complex circumstellar structures
 - (Explode as supernovae)
 - Supernova remnant processing
 - (ISM mixing)
 - Galactic chemical evolution

Thank you !