Introduction	Measuring SFR	Tracing Gas	Star-Formation Law	Alternative Relations	Conclusions

A high resolution study of the star-formation law: the case of M33

Tom Williams Supervised by: Walter Gear and Matt Smith

Cardiff University, UK

18/9/17

Introduction •000000	Measuring SFR 000000000000	Tracing Gas 00000000000	Star-Formation Law	Alternative Relations	Conclusions 000
Introduc	ction				

• Relationship between surface density of star formation and gas (Schmidt, 1959):

$$\Sigma_{SFR} \propto \Sigma_{gas}^N$$
 (1)

• Kennicutt (1998) found $N \simeq 1.4$ for 100 nearby galaxies

Introduction	Measuring SFR	Tracing Gas	Star-Formation Law	Alternative Relations	Conclusions
000000	0000000000000	00000000000	000		000
Introdu	ction				

Physical nature of this law?

- Gravitational collapse (Elmegreen 1994; Krumholz & Thompson 2007) N = 1.5
- SFR dictated by amount of dense gas (Lada+, 2012), N = 1

 found for nearby spirals by Bigiel+ (2008)

Introduction 000000	Measuring SFR	Tracing Gas 00000000000	Star-Formation Law 000	Alternative Relations	Conclusions
Introduc	ction				

Higher resolution studies...

- Molecular gas, rather than total gas drives SF? (Bigiel+, 2008)
- Breaks down at scale of a giant molecular cloud (GMC) complex (Onodera+, 2010; Boquien+, 2015)

Introduction	Measuring SFR	Tracing Gas	Star-Formation Law	Alternative Relations	Conclusions
0000000	000000000000	00000000000	000		000
Alternat	tives				

Dense gas?

- Stars condense out of dense gas in GMCs (André+, 2010, Lada+, 2010)
- Expect a linear relationship between dense gas mass and SFR (Gao & Solomon, 2004)

Introduction 0000000	Measuring SFR 0000000000000	Tracing Gas 00000000000	Star-Formation Law	Alternative Relations	Conclusions 000
Alternat	zives				

Dust?

- Tight relationship between dust mass and SFR (da Cunha+, 2010)
- An evolutionary sequence?

Introduction 00000●0	Measuring SFR 000000000000	Tracing Gas 00000000000	Star-Formation Law	Alternative Relations	Conclusions 000
What w	e want to	do			

- High resolution study of SF law
- Use a variety of SF and gas tracers
- Does the law break down for scales $\sim 100 \text{pc}?$
- Is the relationship driven by gravity or dense gas?
- If it does break down, do other relationships hold?

Introduction	Measuring SFR 0000000000000	Tracing Gas 00000000000	Star-Formation Law	Alternative Relations	Conclusions
M33					

- \sim 840 kpc away (Madore & Freedman, 1991)
- Inclination $\sim 56^{\circ}$ (Regan & Vogel, 1994)
- Half-solar metallicity (Rosolowsky & Simon, 2010)
- Relatively unperturbed, despite a tidal encounter with M31 (McConnachie+, 2010)

Introduction ○○○○○●	Measuring SFR 000000000000	Tracing Gas 00000000000	Star-Formation Law	Alternative Relations	Conclusions
M33					

- \sim 840 kpc away (Madore & Freedman, 1991)
- Inclination ~ 56° (Regan & Vogel, 1994)
- Half-solar metallicity (Rosolowsky & Simon, 2010)
- Relatively unperturbed, despite a tidal encounter with M31 (McConnachie+, 2010)
- Pretty!

Introduction	Measuring SFR	Tracing Gas	Star-Formation Law	Alternative Relations	Conclusions
0000000	●000000000000	00000000000	000		000
SFR Da	ata				

- 3 tracers of SFR: 24μ m+FUV, TIR luminosity, MAGPHYS
- For these (especially MAGPHYS), we need to cover the entire spectrum, UV to sub-mm
- Use archival data, with some new SCUBA-2 data complementing the sub-mm

Introduction 0000000 Measuring SFR

Tracing Gas

Star-Formation Law

Alternative Relations

Conclusions

Data used

Submillimetre/IR data

- WISE: 3.4, 4.6, 12, 22μm
- IRAC: 3.6, 4.5, 5.8, 8μm
- MIPS: 24, 70μm
- PACS: 100, 160µm
- SPIRE: 250, 350µm
- SCUBA-2: 450, 850μm

UV/Optical data

- GALEX: FUV/NUV
- SDSS: u, g, r, i, z

Introduction Measuring SFR Tracing Gas Star-Formation Law Alternative Relations Conclusions

A Panchromatic Data Set

Introduction 0000000 Measuring SFR

Tracing Gas

Star-Formation Law

Alternative Rela

Conclusions 000

A Panchromatic Data Set

Introduction 0000000	Measuring SFR	Tracing Gas	Star-Formation Law	Alternative Relations	Conclusions 000
Prepari	ng Data				

- Need all data at common pixel scale and resolution
- Convolve to SPIRE 350 beam FWHM = 25"
- Regrid to pixels of 25" so statistically independent
- $\bullet\,$ This is $\sim\,$ 100pc at the distance of M33, roughly the size of a GMC

Firstly, calculate SFR from total infrared (TIR) luminosity

- Traces obscured star-formation, assumes dust heated entirely by young stars, and all light absorbed by dust
- Use Kennicutt & Evans (2012) prescription, integrating from 3-1100 μ m:

$$\log_{10}(SFR_{TIR}) = \log_{10}(L_{TIR}) - 43.41$$
 (2)

TIR luminosity gives a total SFR of 0.17 \pm 0.06 $M_{\odot}/{\rm yr}$

Also trace SFR using combination of FUV+24 μ m:

- FUV traces unobscured star-formation over a timescale of ${\sim}10\text{-}100 \text{Myr}$ (e.g. Kennicutt, 1998)
- This should correct for the starlight we're not seeing re-emitted from the dust
- Use Leroy+ (2008) prescription to get SFR density:

$$\Sigma_{\mathsf{SFR}} = 8.1 \times 10^{-2} \mathit{I}_{\mathsf{FUV}} + 3.2^{+1.2}_{-0.7} \times 10^{-3} \mathit{I}_{24} \tag{3}$$

FUV+24 μ m gives a total SFR of 0.26^{+0.11}_{-0.07} M_{\odot} /yr

Finally, calculate SFR using MAGPHYS. Briefly, MAGPHYS:

- Uses a library of optical and IR models
- Allows for bursty star-formation history, and variations in SFR down to 1Myr
- Finds the best fit to the data from these models
- Gives a bunch of properties of the galaxy
- Also gives an error on the modelling for each of these quantities

MAGPHYS gives a total SFR of $0.33^{+0.05}_{-0.06} M_{\odot}$ /yr

Calculate for all pixels within an ellipse of $60' \times 70'$ (19000 pixels!)...need some way to filter out pixels we don't trust

- TIR: Only fit pixels with S/N>2.5 in at least 4 *Herschel*/SCUBA-2 bands
- FUV+24 μ m: Filter using a S/N cutoff on the SFR map
- MAGPHYS: Filter based on percentiles remove any pixels that do not satisfy

$$0.5 \times \frac{p_{86} - p_{16}}{p_{50}} < 0.32 \tag{4}$$

Introduction 0000000	Measuring SFR	Tracing Gas 00000000000	Star-Formation Law 000	Alternative Relations	Conclusions 000
Example	e SEDs				

Introduction	Measuring SFR	Tracing Gas	Star-Formation Law	Alternative Relations	Conclusions
0000000	○○○○○○○○○○●○	00000000000	000		000
SFR Ma	ips				

Measuring SFR Tracing Gas 000000000000

SFR Comparisons

Use MAGPHYS going forwards

Introduction	Measuring SFR	Tracing Gas	Star-Formation Law	Alternative Relations	Conclusions
0000000	000000000000	●0000000000	000		000
Gas					

- Trace atomic hydrogen with HI 21cm (VLA; Thilker+, 2005)
- Trace molecular hydrogen with CO(*J*=2-1) from IRAM (Druard+, 2014)
- Theoretically, we can also trace total gas using the dust continuum (Eales+, 2012; Madgis+, 2012)

Introduction	Measuring SFR	Tracing Gas	Star-Formation Law	Alternative Relations	Conclusions
0000000	000000000000	0●000000000	000		000
Gas					

• Convert the 21cm line directly - from Rohlfs & Wilson (1996):

$$\Sigma_{H\rm I} = 1.8 \times 10^{18} \text{cm}^{-2}/(\text{K km/s}) \eqno(5)$$

Gives a total HI mass of $5 \times 10^8 M_{\odot}$

• For CO, use Braine+ (2010) values:

$$X_{\rm CO} = \begin{cases} 1.54 \times 10^{20} {\rm cm}^{-2} & \text{if } R < 2 {\rm kpc} \\ 2.87 \times 10^{20} {\rm cm}^{-2} & \text{if } R \ge 2 {\rm kpc} \end{cases}$$
(6)

• Convert from J=1-0 to J=2-1 with fixed ratio

$$\operatorname{CO}\left(\frac{2-1}{1-0}\right) = 0.7\tag{7}$$

Gives a total H₂ mass of $4.5 \times 10^{7} M_{\odot}$

Introduction 0000000	Measuring SFR 000000000000	Tracing Gas 000●0000000	Star-Formation Law	Alternative Relations	Conclusions 000
Dust: N	/IBB Fittin	g			

First, create dust map with one-temperature modified blackbody (MBB) fitting:

- Use variable dust emissivity, β
- Assume dust absorption coefficient, $\kappa_{850} = 0.77 \text{cm}^2 \text{g}^{-1}$ (Dunne+, 2000)
- $\bullet\,$ Fit for all pixels with S/N> 2.5 in at least 4 bands, for at least one degree of freedom
- Errors provided by MCMC analysis

Introduction 0000000	Measuring SFR 0000000000000	Tracing Gas 00000●00000	Star-Formation Law	Alternative Relations	Conclusions 000
Dust: I	MAGPHYS				

Also use MAGPHYS to model dust continuum:

- Incorporates polycyclic aromatic hydrocarbons (PAHs)
- Models dust as a series of greybodies with temperatures of 850, 250 and 130K
- Models warm dust as MBB with $\beta = 1.5$, between 30-60K
- Models cold dust as MBB with $\beta =$ 2, between 15-25K

Introduction Measuring SFR Tracing Gas Star-Formation Law Alternative Relations Conclusions

However...

- $\sim 40\%$ of pixels lie outside this range
- Use extended IR library (courtesy of Sébastien Viaene)
- Increases parameter space of the cold dust temperature from $10K < T_C < 30K$ and warm dust temperature to $30K < T_W < 70K$

Introduction 0000000	Measuring SFR	Tracing Gas 0000000000000	Star-Formation Law 000	Alternative Relations	Conclusions 000
Dust					

Introduction 0000000	Measuring SFR 000000000000	Tracing Gas 00000000€00	Star-Formation Law	Alternative Relations	Conclusions 000
Dust M	odel Comp	parison			

Convert				000	000
Introduction	Measuring SFR	Tracing Gas	Star-Formation Law	Alternative Relations	Conclusions

- Use gas-to-dust ratio (GDR)
- For M33, this rises from ${\sim}200$ in the centre of the galaxy to ${\sim}400$ in the outer disk (Gratier+, 2017)
- This variation is logarithmic with radius:

$$\log(\text{GDR}) = 0.07R + 2.26$$
 (8)

Introduction	Measuring SFR	Tracing Gas	Star-Formation Law	Alternative Relations	Conclusions
0000000	000000000000	○○○○○○○○○●	000		000
Gas Cor	nparisons				

	Ηı	H_2	Total gas	MBB	MAGPHYS
$\rho_{\sf sp}$	0.22*	0.38*	0.36*	0.18*	0.23*
$ ho_{pears}$	0.23*	0.40*	0.41*	0.17*	0.24*

Use H_2 and total gas going forwards

Introduction	Measuring SFR	Tracing Gas	Star-Formation Law	Alternative Relations	Conclusions
0000000	000000000000	00000000000	●00		000
Global	fits				

Consistent with previous studies

Introduction	Measuring SFR	Tracing Gas	Star-Formation Law	Alternative Relations	Conclusions
0000000	000000000000	00000000000	0●0		000
Pixel-by	-pixel fittin	ıg			

SF law has broken down at ${\sim}100 {
m pc}$

Introduction	Measuring SFR	Tracing Gas	Star-Formation Law	Alternative Relations	Conclusions
0000000	000000000000	00000000000	00●		000
Variatio	n with niv				

Variation with pixel scale

Stronger correlation at larger pixel scales; superlinear with total gas and linear with molecular?

Introduction	Measuring SFR	Tracing Gas	Star-Formation Law	Alternative Relations	Conclusions
0000000	000000000000	00000000000	000	●00	000
Dense (Gas				

- Use HCN(J=1-0) to trace dense molecular gas
- $\bullet\,$ Pointings from IRAM 30m telescope, FWHM ${\sim}100 \text{pc}$ at distance of M33
- Various pointings most from Buchbender+ (2013), but complementary measurements from Rosolowsky+ (2011) and Braine+ (2017)
- Match up to SFR map

Dense (225				
Introduction	Measuring SFR	Tracing Gas	Star-Formation Law	Alternative Relations	Conclusions
0000000	0000000000000	00000000000	000	○●○	000

Introduction	Measuring SFR	Tracing Gas	Star-Formation Law	Alternative Relations	Conclusions
0000000	000000000000	00000000000	000	○○●	000
SFR/M	dust				

Introduction 0000000	Measuring SFR 000000000000	Tracing Gas 00000000000	Star-Formation Law	Alternative Relations	Conclusions ●00
Conclus	ions				

- $\bullet\,$ MAGPHYS is useful for tracing sub-kpc star-formation since it traces down to ${\sim}1 \text{Myr}$
- Molecular gas and total gas from CO+HI best trace star-formation in M33
- At 100pc, correlations are very weak the star-formation law has broken down
- At larger spatial scales, a linear N is appropriate for molecular gas, superlinear for total gas
- Much stronger correlations between SFR and dense gas
- SFR also correlates better with dust mass, but metallicity-dependent slope

Introduction	Measuring SFR	Tracing Gas	Star-Formation Law	Alternative Relations	Conclusions
0000000	000000000000	00000000000	000		0●0
Further	work				

- Higher S/N SCUBA-2 maps 64 $\!\rightarrow\! 12 m Jy/beam$ at 450 $\!\mu m$
- $\bullet~$ Use this 450 $\mu m~$ map to create a GMC catalogue at ${\sim}30 \text{pc}$ resolution
- Use these M33 maps to refine combining SCUBA-2 data with Herschel 500 $\mu{\rm m}$ and Planck 353GHz data
- \bullet Detailed SED fitting try to break the T/β anti-correlation
- Dark gas
- Very cold (T < 10K) dust?

Thanks	for Listeni	ng			
Introduction	Measuring SFR	Tracing Gas	Star-Formation Law	Alternative Relations	Conclusions
0000000	000000000000	00000000000	000		00●

Any questions?