

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

Faculty of Engineering, Built Environment and Information Technology

Fakulteit Ingenieurswese, Bou-omgewing en Inligtingtegnologie / Lefapha la Boetšenere, Tikologo ya Kago le Theknolotši ya Tshedimošo

Low-cost water vapour radiometry

Prospects and progress

Tinus Stander, Pr.Eng, PhD, SMIEEE

Hilo, 13 June 2017

Agenda

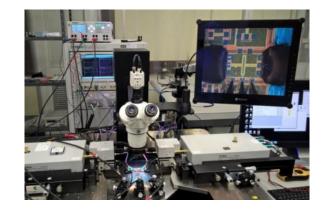
- Introduction to CEFIM mm-wave group
- Project Context
 - An engineer's view of WVR
 - Current systems
 - Development Opportunities
- Project Details
 - Funding
 - Participants
 - Goals
 - Progress
- Conclusion

Introduction to CEFIM

The Carl and Emily Fuchs Institute for Microelectronics

- Founded 1981
- 4 academic staff
- Focus Areas
 - Si / CMOS devices & detectors
 - MEMS devices
 - Microwave and mm-Wave devices

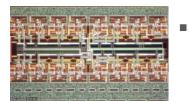
Microwave and mm-wave microelectronics

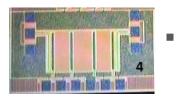

- Principal Investigator: T. Stander
- Students (full-time):
 - 3 PhD, 6 M.Eng, 2 B.Eng IV
- Research Interests
 - mm-Wave communications front-ends
 - System-on-chip front-end components (filters, oscillators, LNAs, PAs)
 - Low-cost hybrid integration
 - On-chip electromagnetic modelling
 - mm-Waves for CubeSat
 - Wideband receivers for solar radiation monitoring
 - Radiation degradation modelling and monitoring
 - Radio Astronomy
 - Fast Digitizers in hybrid GaAs / CMOS
 - Analogue signal pre-processing
 - Water vapour radiometry

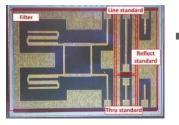
Facilities

- VNA (110 GHz)
- 300mm probe station
- mm-Wave anechoic chamber
 - 50 GHz +
 - Designed in-house
- 50 GHz signal analyzer
 - Extensions 50 110 GHz
 - Spectrum analysis, phase noise, NF, comms analysis

Recent Work


On-chip antenna, 85 – 89 GHz


 CMOS DC radiation reference circuit


SiGe LNA, 65 - 100 GHz

CMOS Current Conveyor, L-band

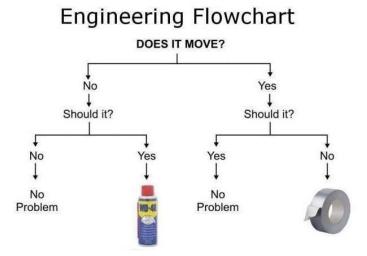
SiGe active enhanced filter, 83 – 83.5 GHz

 Dual notch filter, W-band

Project Context

One engineer's perspective of WVR

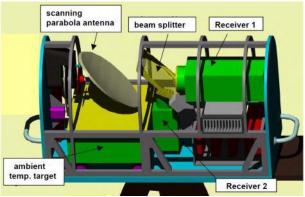
- Point a mm-wave antenna at the sky, measure noise power, give data to clever people.
 - Some bands give info on water vapour, some on liquid water.
 - Concentration vs. height extraction possible
 - Not the client need
 - Used for data correction in VLBI
 - More important > 10 GHz.
 - Used for site surveys in mm-wave radio astronomy


Astronomers

Ме

How an RF engineer sees the problem

- Low noise receiver (Tsys < 300 K)
- High resolution (< 0.1K)
- Stable gain
- Excellent calibration
 - Thermal stabilization
- Multiple channels (noise spectrum)
 - 22 GHz for WV, 31 GHz for LW
 - 183 GHz for WV in dry environments
 - Perhaps consider later
- Scanning antenna
 - Elevation, azimuth
 - Low dwell time (< 1s)
- Narrow beamwidth antenna (< 5°)
 - <u>Very</u> low sidelobes



Commercial Systems (1)

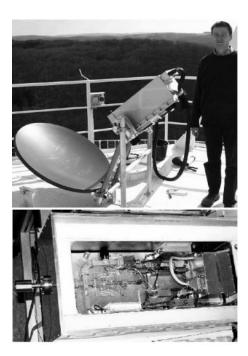
- Radiometer Physics
 - LWP basic
- Liquid water path + Integrated water vapour
 - Total, not vertical profile
- Scanning parabola
- Coax, waveguide integration
- Discrete filters for each channel
 - No variable downconversion

Source: Radiometer Physics (www.radiometer-physics.de)

Commercial Systems (2)

- Radiometrics
 - PR-Series Radiometers
 - MP-Series Profilers
 - Anticipated similar internals

Source: Radiometrics Corporation (www.radiometrics.com)


Research Systems (1)

- Effelsberg (Max Planck Institute for Radio Astronomy)
- Modular / waveguide integration
- Thermal stabilization
- Scanning dish
 - Sky dip

Frequency18Channels25Bandwidth90 $T_{receiver}$ 20Physical temperature25Temperature stabilizationPeThermal noise61

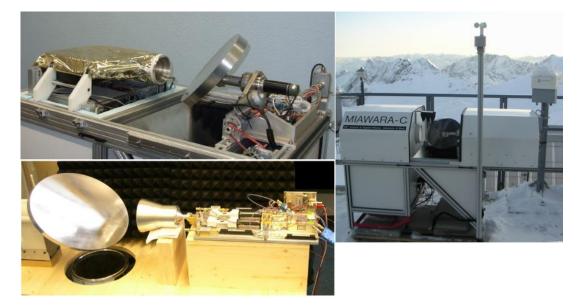
Absolute accuracy

Gain stability Sweep Time Beamwidth Gain calibration 18.3 GHz to 26.0 GHz 25 900 MHz 200 K 25 °C Peltier cooler 61 mK in 0.025 s per spectrum (= 0.27 mm path length noise, assuming 4.5 mm K^{-1}) ~ 1 % of $T_{\rm sys}$ (= 9 mm path length systematic offset assuming 4.5 mm K⁻¹) 2.7×10^{-4} over 400 s 5 s 1.3° for best main-beam overlap noise injection or measured Tinternal

Source: Roy et al, "The Water Vapour Radiometer at Effelsberg", Proc. 7th European VLBI Network Symposium, 2004

Research Systems (2)

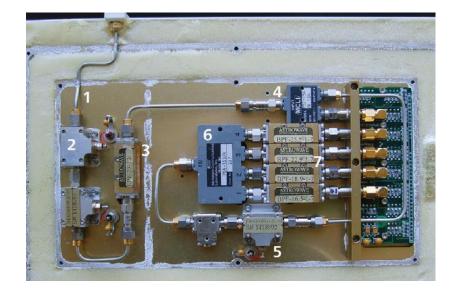
- MIAWARA
 - University of Bern
 - WV extraction 20 80km
 - Horn feed
 - Waveguide components
 - Uncooled
 - Single channel


Calibration technique	Balanced calibration
Operational mode	Single sideband (SSB) mode
Sideband filter	Waveguide bandpass filter (22.235 \pm 0.75 GHz, 50 dB sideband suppression, insertion loss: 0.35 dB)
RF Amplification	2 uncooled HEMT amplifiers (Gain: 35 dB each, Noise Figure: 1.49 / 1.85 dB, manufacturer: Miteq Inc AMFWW series)
Mirror	Plane mirror (gaussbeam optimised shape), edge taper = 45.9 dB
Antenna	Corrugated horn (θ_{HPBM} 6 deg)
Receiver noise- temperature	135 K single side band
Radio-frequency range	21.735 – 22.735 GHz
Broadband spectral analysis	Acousto-optical spectrometer (channels: 1725, f: 1.6–2.6 GHz, Δf_{FWHM} : 1.2 MHz)
Narrowband spectral analysis	Chirp transform spectrometer (channels: 4200, f: 390–430 MHz, Δf_{FWHM} : 14.07 kHz)

Source: Deuber et al, "A new A New 22-GHz Radiometer for Middle Atmospheric Water Vapor Profile Measurements", IEEE Trans. GeoScience Remote Sensing, 42(5), 2004.

Research Systems (3)

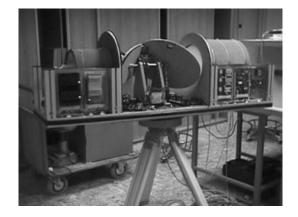
- MIAWARA-C (Compact)
 - University of Bern
 - Horn feed
 - Rotating mirror
 - Waveguide, cables
 - Pattern emerging...



Source: Straub et al, "MIAWARA-C, a new ground based water vapor radiometer for measurement campaigns", Atmos. Meas. Tech., 3, 1–15, 2010

Research Systems (4)

- ATCA
 - Cable and module integration
 - Uncooled
 - 16 26 GHz
 - Horn feed + reflector



Source: Indermuehle et al, "Water Vapour Radiometers for the Australia Telescope Compact Array", PASA, v. 30, e035, 2013

Trends in current systems

- Modular WG/cable integration
- Mechanical motor steering
- Reflector + horn antennas
- Not cooled
 - Sometimes temp stabilized
- Typ. two channels

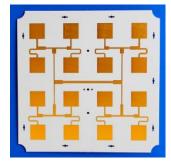
Source: Pottiaux et al, "First Experiences with a Water Vapor Radiometer at the Royal Observatory of Belgium", Symp. EUREF, 2002

Development opportunities (1)

- RF PCB integration?
 - Ku / Ka band SatCom receivers!
 - Cost! But sensitivity?
 - Custom components?
 - Cooling? Temp. stabilization?
 - How many corners can we cut??

Source: Teledyne Microwave Solutions (www.teledynemicrowave.com)

Source: Leica Geosystems (http://metrology.leica-geosystems.com/)



Development opportunities (2)

- Phased array antenna?
 - No more mechanical maintenance
 - Beam shape? Steering? Noise?
 - Conformal array?
 - Electronic azimuth & elevation
- Retrieval Methods
 - Reasonable data from low-cost receiver?
 - Is it worthwhile?

Source: ESA (www.esa.int)

Source: CST (www.cst.com)

Project Details

Project Funding

- National Research Foundation of South Africa (NRF)
- Collaborative Postgraduate Training programme
 - Emphasis on postgraduate student development
- 2017 2020
- ±8 students p.a.
- 60% bursaries, 40% consumables & small equipment budget

Project Participants

- University of Pretoria
 - mm-Wave components н.
 - Testing
- Tshwane University of Technology
 - System design
 - **Digital & Microwave Engineering**
- North-West University
 - **Retrieval Algorithms**
 - Site surveys
- Stellenbosch University
 - Antennas н.
- Hartbeeshoek Radio Astronomy Observatory
 - The end user! н.

NORTH-WEST UNIVERSITY YUNIBESITI YA BOKONE-BOPHIRIMA NOORDWES-UNIVERSITEIT

JRF National Research

Foundation Astronomy Observatory

Hartebeesthoek Radio

Project Goals (1)

- Low-cost planar integrated WVR channel card
 - Possible? Feasible?
 - SIW?
 - (Some) commonality across bands?
- Solid-state phased array antennas for WVR
 - Conformal array?
 - Synthesis method?
 - Hardware?

Project Goals (2)

- Radiometric site surveying
 - Off-the-shelf downconverters
 - Lab blocks / equipment
 - Until system available
 - Total power radiometer
 - Comparison to other survey methods
- New retrieval algorithm development
 - Suited to low-cost equipment

Project Progress

- Preliminary system specs defined (SM Walker, TUT)
- System simulation environment established (SM Walker, TUT)
 - System trade-off study ongoing
- Student Recruitment
 - 3 B.Sc.Hons (Astronomy), NWU
 - 1 M.Sc (Astronomy), NWU
 - Topic: Retrieval methods
 - 1 M.Sc.Eng (Electronic Engineering), SU
 - Antenna array
 - 1 M.Eng (Electronic Engineering), TUT
 - Digital control, data capture, DSP

Conclusion

Conclusion

- We need WVRs for long-term site surveys
 - Maybe for mm-wave VLBI
- Cheap, minimal maintenance
- RF PCB + phased array integration ideal
- Electronic steering ideal
- Full system in 3 years unlikely
 - Train students for future development
- Indication of whether concept is feasible
- Pathfinder components

Tinus Stander

Senior Lecturer Carl and Emily Fuchs Institute for Microelectronics Dept. EEC Engineering University of Pretoria Pretoria, 0002 South Africa

+27 12 420 6704 tinus.stander@ieee.org

http://www.up.ac.za/en/electronics-and-microelectronics-/article/2147601/microwave-and-mm-wave-