Low-cost water vapour radiometry

Prospects and progress

Tinus Stander, Pr.Eng, PhD, SMIEEE

Hilo, 13 June 2017
Agenda

- Introduction to CEFIM mm-wave group
- Project Context
 - An engineer’s view of WVR
 - Current systems
 - Development Opportunities
- Project Details
 - Funding
 - Participants
 - Goals
 - Progress
- Conclusion
Introduction to CEFIM
The Carl and Emily Fuchs Institute for Microelectronics

- Founded 1981
- 4 academic staff
- Focus Areas
 - Si / CMOS devices & detectors
 - MEMS devices
 - *Microwave and mm-Wave devices*
Microwave and mm-wave microelectronics

- Principal Investigator: T. Stander
- Students (full-time):
 - 3 PhD, 6 M.Eng, 2 B.Eng IV
- Research Interests
 - mm-Wave communications front-ends
 - System-on-chip front-end components (filters, oscillators, LNAs, PAs)
 - Low-cost hybrid integration
 - On-chip electromagnetic modelling
 - mm-Waves for CubeSat
 - Wideband receivers for solar radiation monitoring
 - Radiation degradation modelling and monitoring
 - Radio Astronomy
 - Fast Digitizers in hybrid GaAs / CMOS
 - Analogue signal pre-processing
 - Water vapour radiometry
Facilities

- VNA (110 GHz)
- 300mm probe station
- mm-Wave anechoic chamber
 - 50 GHz +
 - Designed in-house
- 50 GHz signal analyzer
 - Extensions 50 – 110 GHz
 - Spectrum analysis, phase noise, NF, comms analysis
Recent Work

- On-chip antenna, 85 – 89 GHz
- SiGe LNA, 65 - 100 GHz
- SiGe active enhanced filter, 83 – 83.5 GHz
- CMOS DC radiation reference circuit
- CMOS Current Conveyor, L-band
- Dual notch filter, W-band
Project Context
One engineer’s perspective of WVR

- Point a mm-wave antenna at the sky, measure noise power, give data to clever people.
 - Some bands give info on water vapour, some on liquid water.
 - Concentration vs. height extraction possible
 - Not the client need
 - Used for data correction in VLBI
 - More important > 10 GHz.
 - Used for site surveys in mm-wave radio astronomy

Astronomers Me
How an RF engineer sees the problem

- Low noise receiver (Ts < 300 K)
- High resolution (< 0.1K)
- Stable gain
- Excellent calibration
 - Thermal stabilization
- Multiple channels (noise spectrum)
 - 22 GHz for WV, 31 GHz for LW
 - 183 GHz for WV in dry environments
 - Perhaps consider later
- Scanning antenna
 - Elevation, azimuth
 - Low dwell time (< 1s)
- Narrow beamwidth antenna (< 5°)
 - Very low sidelobes
Commercial Systems (1)

- Radiometer Physics
 - LWP basic
- Liquid water path + Integrated water vapour
 - Total, not vertical profile
- Scanning parabola
- Coax, waveguide integration
- Discrete filters for each channel
 - No variable downconversion

Source: Radiometer Physics (www.radiometer-physics.de)
Commercial Systems (2)

- Radiometrics
 - PR-Series Radiometers
 - MP-Series Profilers
 - Anticipated similar internals

Source: Radiometrics Corporation
(www.radiometrics.com)
Research Systems (1)

- Effelsberg (Max Planck Institute for Radio Astronomy)
- Modular / waveguide integration
- Thermal stabilization
- Scanning dish
 - Sky dip

MIAWARA

- University of Bern
- WV extraction 20 – 80km
- Horn feed
- Waveguide components
- Uncooled
- Single channel

Research Systems (3)

- MIAWARA-C (Compact)
 - University of Bern
 - Horn feed
 - Rotating mirror
 - Waveguide, cables
 - Pattern emerging…

Research Systems (4)

- ATCA
 - Cable and module integration
 - Uncooled
 - 16 – 26 GHz
 - Horn feed + reflector

Trends in current systems

- Modular WG/cable integration
- Mechanical motor steering
- Reflector + horn antennas
- Not cooled
 - Sometimes temp stabilized
- Typ. two channels

Source: Pottiaux et al, “First Experiences with a Water Vapor Radiometer at the Royal Observatory of Belgium”, Symp. EUREF, 2002
Development opportunities (1)

- RF PCB integration?
 - Ku / Ka band SatCom receivers!
 - Cost! But sensitivity?
 - Custom components?
 - Cooling? Temp. stabilization?
 - How many corners can we cut??

Source: Teledyne Microwave Solutions (www.teledynemicrowave.com)

Source: Leica Geosystems (http://metrology.leica-geosystems.com/)
Development opportunities (2)

- Phased array antenna?
 - No more mechanical maintenance
 - Beam shape? Steering? Noise?
 - Conformal array?
 - Electronic azimuth & elevation

- Retrieval Methods
 - Reasonable data from low-cost receiver?
 - Is it worthwhile?

Source: CST (www.cst.com)
Source: ESA (www.esa.int)
Project Details
Project Funding

- National Research Foundation of South Africa (NRF)
- Collaborative Postgraduate Training programme
 - Emphasis on postgraduate student development
- 2017 – 2020
- ±8 students p.a.
- 60% bursaries, 40% consumables & small equipment budget
Project Participants

- University of Pretoria
 - mm-Wave components
 - Testing
- Tshwane University of Technology
 - System design
 - Digital & Microwave Engineering
- North-West University
 - Retrieval Algorithms
 - Site surveys
- Stellenbosch University
 - Antennas
- Hartbeeshoek Radio Astronomy Observatory
 - The end user!
Project Goals (1)

- Low-cost planar integrated WVR channel card
 - Possible? Feasible?
 - SIW?
 - (Some) commonality across bands?
- Solid-state phased array antennas for WVR
 - Conformal array?
 - Synthesis method?
 - Hardware?
Project Goals (2)

- Radiometric site surveying
 - Off-the-shelf downconverters
 - Lab blocks / equipment
 - Until system available
 - Total power radiometer
 - Comparison to other survey methods
- New retrieval algorithm development
 - Suited to low-cost equipment
Project Progress

- Preliminary system specs defined (SM Walker, TUT)
- System simulation environment established (SM Walker, TUT)
 - System trade-off study ongoing
- Student Recruitment
 - 3 B.Sc.Hons (Astronomy), NWU
 - 1 M.Sc (Astronomy), NWU
 - Topic: Retrieval methods
 - 1 M.Sc.Eng (Electronic Engineering), SU
 - Antenna array
 - 1 M.Eng (Electronic Engineering), TUT
 - Digital control, data capture, DSP
Conclusion
Conclusion

- We need WVRs for long-term site surveys
 - Maybe for mm-wave VLBI
- Cheap, minimal maintenance
- RF PCB + phased array integration ideal
- Electronic steering ideal
- Full system in 3 years unlikely
 - Train students for future development
- Indication of whether concept is feasible
- Pathfinder components
Tinus Stander

Senior Lecturer
Carl and Emily Fuchs Institute for Microelectronics
Dept. EEC Engineering
University of Pretoria
Pretoria, 0002
South Africa

+27 12 420 6704
tinus.stander@ieee.org

http://www.up.ac.za/en/electronics-and-microelectronics-/article/2147601/microwave-and-mm-wave-