POL-2 & BISTRO: Studying the effects of interstellar magnetic fields

NGC 1275 (3C 84) Credits: NASA / ESA

Simon Coudé EAO, Hilo - 2017/02/03

Summary

- 1. A new age of sub-mm/mm polarimetry
 - Current landscape
 - POL-2 and the synergies of the JCMT
- Polarisation towards extra-galactic sources
 Rapid variability towards radio-loud AGN
- 3. Polarisation towards galactic sources
 - Properties of interstellar dust grains
 - BISTRO and the study of star-forming regions
 - Magnetism in a proto-stellar core

1. A NEW AGE OF SUB-MM/MM POLARIMETRY

The IRAM 30-m telescope Credit: Nicolas Biver

Planck and the Galactic magnetic field

Credits: Planck/ESA

HAWC+ on SOFIA

Stratospheric Observatory for Infrared Astronomy

Credit: German Aerospace Center

BLAST-TNG

Balloon-Borne Large Aperture Submillimeter Telescope - The Next Generation Coming December 2017

BLASTPol in Antarctica Credit: University of Toronto

Interferometers

SMA, NOEMA and ALMA

Credits: Charlène Lefèvre/IRAM

NOrthern Extended Millimeter Array

3C 286 – ALMA PI map at 1.3 mm

J2000 Declination

PolKa at APEX

APol at ASTE

Atacama Pathfinder Experiment

Atacama Submillimeter Telescope Experiment

Credit: University of Tokyo

NIKA-2 at the IRAM 30-m telescope

Institut de RadioAstronomie Millimétrique

Credit: IRAM

POL-2 AT THE JCMT

James Clerk Maxwell Telescope Credit: East Asian Observatory

What is the JCMT?

Credit: East Asian Observatory

- Submillimetre observatory
 - Instrumentation for 450 &
 850 μm atmospheric windows
 - Continuum, Spectroscopic and Polarimetric synergy
- 15 meters single-dish
 - 7.9" FWHM at 450 μm
 - 13.0 $^{\prime\prime}$ FWHM at 850 μm
 - Spatial scales up to $\sim 5'$
 - Experiences may vary
- Mauna Kea observatory
 - 4092 meters in elevation
 - > 50 % of time below $\tau_{225} = 0.12$

OMC-2 – SCUBA-2 at 850 μm Credits: JCMT GBS team IR2

The SCUBA-2 polarimeter (POL-2)

2. POLARISATION TOWARDS EXTRA-GALACTIC SOURCES

Messier 87 – X-ray + Radio Credits: NASA/NRAO

Active galactic nuclei (AGN)

Supermassive black holes, accretion & energetic jets

McKinney, Tchekhovskoy & Bladford 2012

Structure of galactic jets

Tchekhovskoy & Bromberg 2016

Effect on the intergalactic medium NGC 1275 (3C 84)

Credits: SDSS/SIMBAD

Gendron-Marsolais+ 2017

POL-2: Monitoring of rapid variability in the submillimetre linear polarisation of four radio-loud AGN - 3C 84, 273, 279 & 454.3

S. Coudé,^{1,2}* M.-L. Gendron-Marsolais,^{1,3}[†] J. Hlavacek-Larrondo,^{1,3} P. Bastien,^{1,2} R. Rao,⁴, K. Lacaille,⁵ J. Greaves,^{6,7} D. S. Berry,⁸ A. Chrysostomou,^{9,10} J. Dempsey,⁸ P. Friberg,⁸ S. F. Graves,⁸ M. Houde,¹¹ D. Johnstone,^{12,13} J. Kennedy,^{1,14} H. Parsons,⁸ K. Pattle,¹⁵ M. G. Rawlings⁸ and G. Savini¹⁶ ¹Centre de Recherche en Astrophysique du Québec (CRAQ), ²Institute for Research on Exoplanets (iREx) & ³X-TRA Astrophysics Research Group, Université de Montréal, Département de Physique, C.P. 6128 Succ. Centre-ville, Montréal, OC H3C 3J7, Canada ⁴Academia Sinica Institute for Astronomy and Astrophysics, Hilo, HI ⁵Dalhousie University, Halifax, Nova Scotia ⁶University of St-Andrews, UK ⁷Cardiff University, Wales ⁸East Asian Observatory, 660 N, A'oh kū Place, University Park, Hilo, Hawaii 96720, USA ⁹University of Hertfordshire ¹⁰SKA Headquarters ¹¹University of Western Ontario, London, Ontario ¹²NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Rd, Victoria, BC, V9E 2E7, Canada ¹³Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1, Canada 14 Secret location, Ottawa, Canada, Planet Earth, Solar System, Milky Way 15 University of Central Lancashire, Preston, UK ¹⁶University College London, UK

Unofficial working title

Strange quasi-stellar objects, or how we learned to stop worrying and love active galactic nuclei

Quasar 3C 273

Combined JCMT 850 μm & SMA 1.3 mm monitoring

Quasar 3C 279

Combined JCMT 850 μm & SMA 1.3 mm monitoring

Comparison between methods

Gaussian peak fit -v.s.- binning average

3. POLARISATION TOWARDS GALACTIC SOURCES

The Eagle Nebula (M16) – Optical Credits: ESO

Emission from cold interstellar dust grains

Polarisation from thermal dust emission

Interplanetary dust particle

Credits: Donald Brownlee & Elmar Jessberger

- Asymmetric particles
 - Hiltner 1949
- Alignment mechanisms
 - Paramagnetic relaxation
 - Davis & Greenstein 1951
 - Radiative Torque (RAT)
 - Draine & Weingartner 1996
 - H₂ formation
 - Andersson+ 2013
 - Mechanical
 - Gold 1952

Radiative Alignment Torque (RAT)

Lazarian & Hoang 2007

Testing theories of grain alignment

BISTRO and the study of magnetism in star-forming regions

Oph C Credit: Kate Pattle

The study of magnetism in star-forming regions

Orion Molecular Cloud 1

10 %

00^s

Dec -05 22 39.0

R.A.

Center: R.A. 05 35 14.23

Detailed analysis in Pattle et al., in prep. !

Perseus B1 (Barnard 1)

Composite image Optical DSS + 850 µm SCUBA-2

A protostellar core without depolarisation?

Composite image Optical DSS + 850 µm SCUBA-2

CB 68

Evolution of magnetic fields in protostellar cores

Misaligned magnetic field relative to the core's angular momentum

Kataoka, Machada & Tomisaka 2012

Possible interpretations?

1. The magnetic field in the prototypical protostellar core

2. The strangely unpolarised starforming Bok Globule

CONCLUSIONS

The Orion Nebula Credits: NASA/ESA

Conclusions

- A new era for submillimetre polarimetry
 - POL-2 takes advantages of unique JCMT capabilities
 - Multi-scale studies of magnetism
 - Multi-wavelength tests of grain alignment
- Monitoring of fast variability in radio-loud AGN
 Accretion and jet launching mechanisms in quasars
- Magnetic fields in star-forming regions
 - BISTRO is providing tremendous results, the best results
 - Studying the magnetic field in protostellar cores
 - What about depolarisation?

If we knew what we were doing, it wouldn't be called Research. -A. Einstein

Thanks, Merci and Mahalo!

References

- Hiltner W. A. ,1949, ApJ, 109, 471
- Davis L. & Greenstein J. L., 1951, ApJ, 114, 206
- Gold T., 1952, Nature, 169, 322
- Mathis J. S., Rumpl W. & Nordsieck K. H., 1977, ApJ, 217, 425
- Draine B. T., Lee, H. M., 1984, ApJ, 285, 89
- Draine B. T., Anderson, N., 1985, ApJ, 292, 494
- Li A. & Greenberg J. M., 1997, A&A, 323, 566
- Perlman E. S. et al., 1999, AJ, 117, 2185
- Weingartner J. C. & Draine B. T., 2001, ApJ, 548, 296
- Matthews B. C. & Wilson C. D., 2003, ApJ, 574, 822
- Vallée J. P. & Fiege J. D., 2007, AJ, 134, 628
- Jorstad S. G. et al., 2007, AJ, 134, 799
- Matthews B. C. et al., 2009, ApJS, 182, 143

References

- Kataoka A., Machada M. N. & Tomisaka K., 2012, ApJ, 761, 40
- McKinney J. C., Tchekhovskoy A. & Bladford R. D., 2012, MNRAS, 423, 3083
- Vaillancourt J. E. & Matthews B. C., 2012, ApJS, 201, 13
- Andersson B.-G. et al., 2013, ApJ, 775, 84
- Wiesemeyer H. et al., 2014, PASP, 126, 1027
- Fissel L. et al., 2016, ApJ, 824, 134
- Nagai H. et al., 2016, ApJ, 824, 132
- Tchekhovskoy A. & Bromberg O., 2016, MNRAS, 461, 46
- Kainulainen J. et al., accepted in A&A, arXiv:1603.05688
- Gendron-Marsolais M.-L. et al., accepted in MNRAS, arXiv:1701.03791
- Ritacco A. et al., accepted in A&A, arXiv:1609.02042

APPENDICES

The Crab Nebula – Optical & X-ray Credits: NASA/ESA/ASU

POL-2 – The Crab Nebula

W43-MM1 – SMA at $\sim 870 \ \mu m$

Extra-galactic sources

Messier 82 Credit: HST/NASA/ESA Messier 87 Credit: HST/NASA/ESA

The mystery of the Southern Bay NGC 1275 (3C 84)

Gendron-Marsolais+ 2017

Emission from cold interstellar dust grains

- Grain composition
 - Silicates, carbon (Draine & Lee 1984)
 - Spherical grains, Mie diffusion
 - Refractive mantle (Li & Greenberg 1997)
 - Small grains (Weingartner & Draine 2001)
 - UV extinction
- Size distribution
 - Model from Mathis, Rumpl & Nordsieck 1977 $dn_i \propto n_H a^{-3.5} da$
 - Where n_H is the hydrogen density
 - a is the grains radii ($a_{
 m min}$ < $a_{
 m max}$)

Submillimetre polarisation in M87

POL-2 at 850 μm

12" bins

Bastien et al., in prep.

Submillimetre polarisation in M87

Magnetic fields in M87

Key: ----- Surface of Jet, brightest in radio

Center of Jet, brightest in optical