A Case Study of Triggered Star Formation in Cygnus X

Soumen Deb1

Erik Rosolowsky1 Roland Kothes2

1Department of Physics, University of Alberta, Canada

2Herzberg Institute for Astrophysics, Canada

East Asian Observatory
Hilo, Hawaii

5 February 2018
Overview

- Galactic and extragalactic star formation
- Physical and statistical model of star formation
- Star forming region - Cygnus X
- Cometary feature
- Distribution of molecular gas - presence of outflows
- Infrared continuum emission - dust mass
- Molecular line emission data - column density
- Possible sources of ionization
Region of Interest: Cygnus X

Figure: Relative locations of major segments of Cygnus region. The red circle above OB2 shows the location of the cometary feature (source: SIMBAD).
Region of Interest: Cygnus X

Figure: Cometary feature (source: SIMBAD)
Dust Emission Data: Structure of the Comet

- Raw data obtained at dissimilar resolution

![Figure: (a), (b), (c) Total intensity distribution of convolved dust emission data, along with (d) integrated intensity map from 12CO line.](image)
Spectral Energy Distribution and Mass

- Optically thick dust cloud
- From radiative transfer processes:

\[I_\nu(s_0) \approx B_\nu(T)(1 - e^{-\tau_\nu(s_0)}) \]

\[\approx \tau_\nu(s_0)B_\nu(T) \]

\[\approx \left(\kappa_\nu \int_0^{s_0} \rho(s)ds \right) B_\nu(T). \]

- Dust intensity model: \(I_\nu = \Sigma_{dust} \kappa_\nu B_\nu(T) \), \(\kappa_\nu \) is adopted as (Hildebrand 1983), \(\kappa_\nu = 0.1 \text{cm}^2 \text{g}^{-1} \left(\frac{\nu}{1 \text{THz}} \right)^\beta \)
- Fixed temperature \(T=15 \text{ K} \) of dust cloud is assumed:
- Mass of the cometary structure is estimated as \(400M_\odot \)

Figure: SED: fitted (dashed line) and observed (triangles) for (a) core of the comet and (b) comet head; (c) represents surface density map of H\(_2\) with background emission removed
CO(3-2) Line Emission

- 12CO, 13CO, C18O lines reveal the presence of two molecular outflows, identified as G81.424+2.140 and G81.435+2.147 (SIMBAD):

\[\text{Figure: Velocity-integrated intensity plots showing the outflows in the cometary feature in (a) }^{12}\text{CO, (b) }^{13}\text{CO, and (c) C}^{18}\text{O lines. Red and Blue contour lines represent red and blue shifted emissions, plotted in the background of total emission shown in gray.}\]
CO(3-2) Line Emission: Bipolarity

- Bipolarity in terms of deviation of intensity from Gaussian symmetry

Figure: A side-by-side comparison between the outflows G81.424+2.140 and G81.435+2.147 in (a),(d) 12CO, (b),(e) 13CO, and (c),(f) C18O lines. The asymmetry in intensity about the central velocity(frequency), which is associated with regions at rest with respect to Earth’s frame, indicates the strength of bipolarity (red and blue colors denote redshift and blueshift respectively).
CO line Emission: Column Density

- Optically Thick 12CO lines: $\tau_\nu >> 1$
- Optically thin C18O lines: $\tau_\nu << 1$
- Not optically thin 12CO lines: $\tau_\nu \approx 1$
- Common excitation temperature: $T_{\text{ex}} = \frac{h\nu/k}{\ln\left[1 + \frac{h\nu/k}{T^* + J_\nu(T_{\text{bg}})}\right]}$, $J_\nu(T) = \frac{h\nu/k}{e^{h\nu/kT} - 1}$

(optically thick emission)

- Optical depth for C18O: $\int \tau_\nu dv = \frac{\int T_R dv}{J_\nu(T_{\text{ex}} - J_\nu(T_{\text{bg}}))}$
- Optical depth for 13CO: $\tau_\nu = -\ln\left[1 - \frac{T_R}{J(T_{\text{ex}} - J(T_{\text{bg}}))}\right]$
- Molecular column density in level u for a rotational transition $u \rightarrow l$:
 $$N_u = \frac{8\pi\nu_0^3}{c^3 A_{ul}} \frac{1}{e^{h\nu_0/kT_{\text{ex}} - 1}} \int \tau_\nu dv$$

- Total column density: $N_{\text{tot}} = \frac{Q_{\text{rot}}}{g_u} e^{E_u/kT_{\text{ex}}} N_u$,
 $$Q_{\text{rot}} = \sum_{J=0}^{\infty} (2J + 1) e^{E_J/kT} (\text{Mangum & Shirley 2017})$$
CO line Emission: Column Density

- Optically Thick 12CO lines: $\tau_\nu >> 1$, optically thin C18O lines: $\tau_\nu << 1$, not optically thin 12CO lines: $\tau_\nu \gtrapprox 1$

Figure: Spatial maps of total column density in the cometary region in C18O and 13CO lines.
- 2.32 \(m_H \) of mass for every \(H_2 \) molecule
- Convolution of \(^{13}\)CO and \(^{18}\)O emission

Figure: (a) Column density of \(H_2 \), (b) column density ratio of \(^{18}\)O to \(H_2 \), (c) column density ratio of \(^{13}\)CO to \(H_2 \).
Presence of cold, dense atomic hydrogen gas cloud to the north of cometary feature
- HI self-absorption
- Thick rim in optical as well as in radio continuum
- Ionizing source: OB2 complex vs single star

Figure: Position of single stellar object, as potential source of ionization (source: SIMBAD).
Thank You!