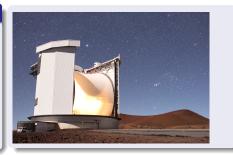
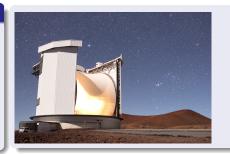
Future prospects for the JCMT


Ciska Kemper (ASIAA)

January 31, 2018

Brief outlook

TMT


- 3 telescopes to be decommissioned
 - CSO
 - UH-teaching
 - UKIRT?
- pending approval incoming IfA director

Brief outlook

TMT

- 3 telescopes to be decommissioned
 - CSO
 - UH-teaching
 - UKIRT?
- pending approval incoming IfA director

Funding

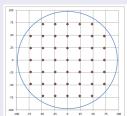
- 2 years + 5 years pending
- EAO, UK, Canada
- VLBI
- UKIRT
- Vietnam, Thailand, Australia

Single-dish submm astronomy in the era of interferometry

Instrumentation

- multipixel
- complexity
- testing for e.g. ALMA
- no funding in baseline

Planned instrumentation upgrades


Heterodyne

RxA

- new dewar / VLBI receiver
 - 3 slots

HARP-B

- 4x4 pixels, 2/3 not working
- fix pixels?
- New, larger array?

Continuum

SCUBA-2:

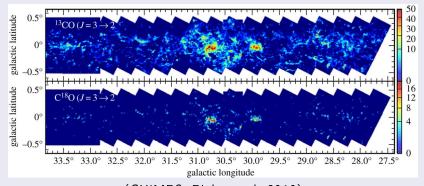
10,000 pixels

SCUBA-3

- efficient mapping
- 15' FOV
- 100,000 pixels
- no polarization
- 850 only

VLBI and the Event Horizon Telescope

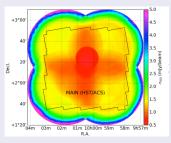
JCMT is part of the EHT.

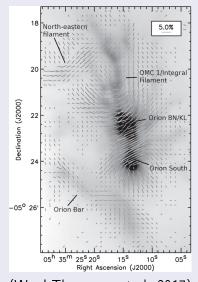

The primary goal is to image the black hole shadow of Sgr A^* or M87.

Surveys & Mapping

Single dish lends itself very well for mapping large areas.

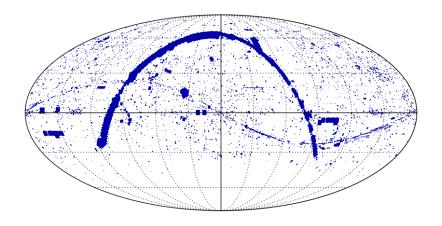
Can be enhance with multipixel instruments:


- HARP-B
- SCUBA2
- future

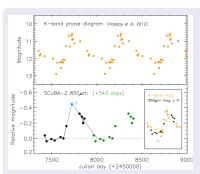

(CHIMPS; Rigby et al. 2016)
Future prospects for the JCMT

Science goals

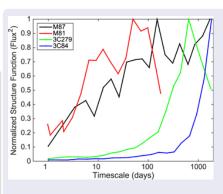
- Galactic structure:
 - Milky Way
 - external galaxies
- large scale structure in **ISM**
- deep fields
- polarization maps



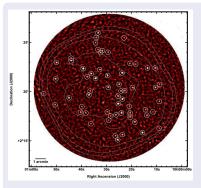
S2COSMOS



(Ward-Thompson et al. 2017) Future prospects for the JCMT


Sky coverage of existing SCUBA2 observations

Time domain astronomy

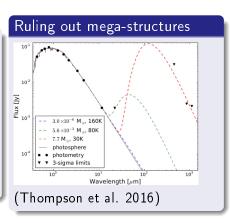


A variable YSO in TRANSIENTS (Yoo et al. 2017)

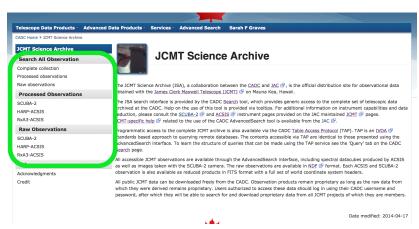
- relatively unexplored
- different time scales:
 - follow-up on trigger events
 - longer time series
- talk by Sofia Wallström and poster by Thavisha

Large programs

COSMOS 450 micron field


- Large beam-size: low spatial resolution, but easy to cover larger areas
- Multi-pixel receivers allow for fast mapping
- Different kind of science than PI projects: Statistics
- Better return rate in terms of number of papers
- Beneficial for small partners

LAP are successful:


- participation
- EAO vs Canada, UK
- publications

PI programs

- ToO
- Solar System
- "Unique" objects
- New observational methods, techniques, strategies
- Pilot programs
- Completion/follow-up of large programs

The legacy of JCMT

http://www.eaobservatory.org/jcmt/science/archive/guide/
The JCMT data archive for the virtual observer

Training and development

young astronomers

- observing / analysis
- internships
- instrumentation

instruments

• test site for e.g. ALMA

new communities

- EAO countries
- beneficial to UK and Canada
- expansion into east-asia

Conclusions

In the era of large submm interferometric arrays, JCMT has to build on its strengths:

- Collaboration within and between the regions
- Large programs targeting relatively large areas
- Updating the instrumentation to improve mapping speed, both for bolometer and heterodyne receivers
- Time domain astronomy
- Participation in VLBI and EHT
- Further development of upcoming communities in astronomy
- Training of students and post-docs in observational astronomy and instrumentation

Cosmic Dust: origin, applications & implications

11 - 15 June 2018 Copenhagen http://cphdust2018.nbi.ku.dk/

Registration opens tomorrow: 1 February 2018 Abstract submission deadline: 5 March 2018