MALATANG

MApping the dense moLecular gAs in The strongest stAr-formiNg Galaxies

www.eaobservatory.org/jcmt

On behalf of the MALATANG team:

THOMAS R. GREVE UNIVERSITY COLLEGE LONDON

Seoul National University, Feb 1st 2018

Exploring star formation as a function of physical scale, environment and gas density

Goals:

- Resolved dense gas star formation relations
- Intermediate scales/luminosities
- Different environments: nuclear vs. disk
- Radial distribution of dense gas and SF efficiency

HCN(1-0) in M51

Exploring star formation as a function of physical scale, environment and gas density

Star formation relations

Theorists

$$SFR = \frac{M_{\rm dense}}{\tau_{\rm ff}} \times \epsilon_{\rm ff}$$

$$SFE = \frac{SFR}{M_{\text{dense}}} = \frac{\epsilon_{\text{ff}}}{\tau_{\text{ff}}}$$

Observer

$$L_{\rm IR} = 10^{\beta} L_{\rm line}^{\alpha}$$

 $\frac{L_{\rm IR}}{L_{\rm line}} = 10^{\beta} L_{\rm line}^{\alpha - 1}$

Exploring star formation as a function of physical scale, environment and gas density

Star formation relations

Theorists

$$SFR = rac{M_{
m dense}}{ au_{
m ff}} imes \epsilon_{
m ff}$$
 $SFE = rac{SFR}{M_{
m dense}} = rac{\epsilon_{
m ff}}{ au_{
m ff}}$

Observer

$$L_{\rm IR} = 10^{\beta} L_{\rm line}^{\alpha}$$

$$\frac{L_{\rm IR}}{L_{\rm line}} = 10^{\beta} L_{\rm line}^{\alpha - 1}$$

HCN(1-0) in M51

Exploring star formation as a function of physical scale, environment and gas density

Star formation relations

Theorists

$$SFR = \frac{M_{\text{dense}}}{\tau_{\text{ff}}} \times \epsilon_{\text{ff}}$$

 $SFE = \frac{SFR}{M_{\text{dense}}} = \frac{\epsilon_{\text{ff}}}{\tau_{\text{ff}}}$

Observer

$$L_{\rm IR} = 10^{\beta} L_{\rm line}^{\alpha}$$

 $\frac{L_{\rm IR}}{L_{\rm line}} = 10^{\beta} L_{\rm line}^{\alpha - 1}$

HCN(1-0) in M51

Exploring star formation as a function of physical scale, environment and gas density

Star formation relations

Theorists

$$SFR = \frac{M_{\text{dense}}}{\tau_{\text{ff}}} \times \epsilon_{\text{ff}}$$

 $SFE = \frac{SFR}{M_{\text{dense}}} = \frac{\epsilon_{\text{ff}}}{\tau_{\text{ff}}}$

Observer

$$L_{\rm IR} = 10^{\beta} L_{\rm line}^{\alpha}$$

$$\frac{L_{\rm IR}}{L_{\rm line}} = 10^{\beta} L_{\rm line}^{\alpha - 1}$$

HCN(1-0) in M51

Exploring star formation as a function of physical scale, environment and gas density

Star formation relations

Theorists

$$SFE = \frac{SFR}{M_{dense}} = \frac{\epsilon_{\rm ff}}{\tau_{\rm ff}}$$

Observer

 $L_{\rm IR} = 10^{\beta} L_{\rm line}^{\alpha}$

 $\frac{L_{\rm IR}}{L_{\rm line}} = 10^{\beta} L_{\rm line}^{\alpha - 1}$

Feedback effects (e.g., radiation pressure)?

Environment (pressure, turbulence)

Mechanical heating

What densities do HCN/HCO+ J=1-0 really probe (e- coll. excitation)?

- Excitation effects (mid-IR pumping)
- PDR vs. XDR chemistry
- Fractionisation
- Mechanical, CR, X-ray heating
- HCN self-absorption in ULIRGs

MALATANG IN A NUTSHELL

- A 390hr (band 3) JCMT/HARP campaign to map HCN and HCO+ J=4-3 in 23 nearby IRbright galaxies
- Systematically explore the dense gas vs. star formation relationship on scales ~0.2-2.8kpc across nuclear vs. disk environments
- MALATANG membership: 97
- All JCMT partners represented
- Observations completed!

HARP

MALATANG IN A NUTSHELL

- A 390hr (band 3) JCMT/HARP campaign to map HCN and HCO+ J=4-3 in 23 nearby IRbright galaxies
- Systematically explore the dense gas vs. star formation relationship on scales ~0.2-2.8kpc across nuclear vs. disk environments
- MALATANG membership: 97
- All JCMT partners represented
- Observations completed!

Why HCN and HCO+ J=4-3?

Transition	$n_{ m crit}$	$E_J/k_{ m B}$		
	$[cm^{-3}]$	[K]		
CO(1 - 0)	$4.4 imes 10^2$	5.53		
CO(2 - 1)	3.6×10^{3}	16.60		
CO(3 - 2)	$1.3 imes 10^4$	33.19		
CO(4 - 3)	$3.0 imes10^4$	55.32		
CO(5-4)	$5.9 imes10^4$	82.97		
CO(6-5)	1.0×10^{5}	116.16		
CO(7-6)	$1.5 imes10^5$	154.87		
HCN(1-0)	$1.7 imes 10^5$	4.25		
HCN(2-1)	1.6×10^{6}	12.76		
HCN(3-2)	$5.2 imes 10^6$	25.52		
HCN(4-3)	$1.3 imes10^7$	42.53		
$HCO^{+}(1-0)$	$2.6 imes10^4$	4.25		
$HCO^{+}(2-1)$	$2.6 imes 10^5$	12.76		
$HCO^{+}(3-2)$	$1.0 imes 10^6$	25.52		
$HCO^{+}(4-3)$	$2.5 imes10^6$	42.53		
CS(1-0)	8.3×10^{3}	2.35		
CS(2-1)	$7.9 imes10^4$	7.05		
CS(3-2)	$3.0 imes 10^5$	14.11		
CS(4-4)	$7.7 imes 10^5$	35.27		
CS(5-4)	1.8×10^{6}	49.37		
CS(6-5)	$3.1 imes 10^6$	65.83		
CS(7-6)	$4.9 imes 10^6$	6 5.83		

MALATANG IN CONTEXT

HERACLES (Leroy et al.):

HERA/IRAM-30m CO(2-1) map	S
of ~30 nearby disk galaxies	

- ~20" resolution (FWHM)
- About 10 sources overlap with MALATANG

▶ Kepley et al. (2014) :

- GBT/W-receiver HCN/ HCO+(1-0) on-the-fly maps of M82
- Overlap with MALATANG
- ~9" resolution (FWHM)

EMPIRE (Bigiel et al.):

EMIR/IRAM-30m HCN/ HCO+(1-0) on-the-fly maps of 9 nearby galaxies

No overlap with MALATANG

MALATANG:

JCMT/HARP HCN/HCO+(4-3) maps of ~23 nearby disk galaxies

Tracing truly high density, starforming gas

SAMPLE

Criteria:

- IR-bright (f_{60um} > 50Jy and f_{100um} > 100Jy) from RGBS
 JCMT observable (δ > -40°)
 Nearby (2.5-54Mpc)
 Normal, starburst and AGN galaxies
- Herschel data

23 of the nearest and IRbrightest galaxies beyond the Local Group

Ν	Source Name	R.A.	Decl.	Distance	Diameter	$f_{60\mu m}$	f100µm	logL _{fir}	$\log \Sigma_{SFR}$
		(J2000)	(J2000)	(Mpc)	(arcmin)	(Jy)	(Jy)	(<i>L</i> _☉)	$(M_{\odot} yr^{-1} kpc^{-2})$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
1	*NGC 253	00 47 33.1	-25 17 18	2.5	27.5×6.8	967.81	1288.15	10.29	0.05
2	*NGC 660	01 43 02.4	13 38 42	14.0	8.3×3.2	65.52	114.74	10.38	0.37
3	*NGC 891	02 22 33.4	42 20 57	10.0	13.5×2.5	66.46	172.23	10.18	-1.76
4	Maffei 2	02 41 55.0	59 36 15	2.8	5.82×1.57	135	225	10.00	0.42
5	*NGC 1068 ^a	02 42 40.7	-00 00 48	16.7	7.1×6.0	196.37	257.37	10.89	1.92
6	NGC 1097	02 46 19.0	-30 16 30	16.4	9.3×6.3	53.35	104.79	10.59	-0.08
7	*NGC 1365 ^a	03 33 36.4	-360825	20.8	11.2×6.2	94.31	165.67	10.86	0.55
8	*IC 342	03 46 48.5	68 05 47	3.7	21.4×20.9	180.80	391.66	10.01	-2
9	NGC 1808 ^a	05 07 42.3	-37 30 47	10.5	6.5×3.9	105.55	141.76	10.55	0.61
10	*NGC 2146	06 18 37.7	78 21 25	15.2	6.0×3.4	146.69	194.05	10.93	0.44
11	*NGC 2903	09 32 10.1	21 30 03	6.2	12.6×6.0	60.54	130.43	10.05	-1.22
12	*M82 ^b	09 55 52.7	69 40 46	3.5	11.2×4.3	1480.42	1373.69	10.61	1.05
13	*NGC 3079	10 01 57.8	55 40 47	16.2	7.9×1.4	50.67	104.69	10.65	-0.4
14	NGC 3521	11 05 48.6	-00 02 09	8.2	11.0×5.1	49.19	121.76	9.84	-1.55
15	*NGC 3627	11 20 14.9	12 59 30	8.1	9.1×4.2	66.31	136.56	10.24	-1.43
16	*NGC 3628	11 20 17.0	13 35 23	9.6	14.8×3.0	54.80	105.76	10.14	-0.85
17	Arp 299	11 28 30.4	58 34 10	54.1		113.05	111.42	11.74	0.3
18	*NGC 4631	12 42 08.0	32 32 29	8.1	15.5×2.7	85.40	160.08	10.10	-1.9
19	NGC 4736	12 50 53.0	41 07 14	4.8	11.2×9.1	71.54	120.69	9.59	-1.01
20	M51	13 29 52.7	47 11 43	7.6	11.2×6.9	97.42	221.21	10.31	-1.78
21	*M83	13 37 00.9	-29 51 56	3.7	12.9×11.5	265.84	524.09	9.94	-1.44
22	NGC 5457	14 03 12.5	54 20 56	5.2	28.8×26.9	88.04	252.84	10.13	-2.14
23	*NGC 6946	20 34 52.3	60 09 14	5.5	11.5×9.8	129.78	290.69	10.01	-1.68

OBSERVATIONS

- 16 edge-on galaxies
- Grid mode along major axis

- 7 face-on/large galaxies
- Jiggle maps of 2'x2' central region

- 16 edge-on galaxies
- Grid mode along major axis

- 7 face-on/large galaxies
- Jiggle maps of 2'x2' central region

SPECTRA

SPECTRA

PAPERS – STATUS

Last MTR: 9 papers proposed	2 under construction
1 accepted	3 halted
2 submissions in 2018	

Use this meeting to brainstorm new ideas

Annouce a new call for MALATANG paper ideas

PAPER *Survey* & DR paper (Zhang et al., in prep)

MALATANG-DR:

- Gildas/CLASS based
- Independent from ORAC-DR
- Important consistency check

Features:

- Converts raw HARP data to sdfformat (CLASS readable)
- Sophisticated quality-assessment of each receptor sub-scan -> 'goodnes'

- Optimised for weak/broad lines
- Channel-based noise calculation

PAPER Survey & DR paper (Zhang et al., in prep)

MALATANG-DR:

- Gildas/CLASS based
- Independent from ORAC-DR
- Important consistency check

Features:

- Converts raw HARP data to sdfformat (CLASS readable)
- Sophisticated quality-assessment of each receptor sub-scan -> 'goodnes'

MALATANG

Optimised for weak/broad lines

Channel-based noise calculation

PAPER Survey & DR paper (Zhang et al., in prep)

MALATANG-DR:

- Gildas/CLASS based
- Independent from ORAC-DR
- Important consistency check

Features:

- Converts raw HARP data to sdfformat (CLASS readable)
- Sophisticated quality-assessment of each receptor sub-scan –> 'goodnes'

- Optimised for weak/broad lines
- Channel-based noise calculation

PAPER II L_{gas} - L_{IR} on sub-kpc scales (Tan et al., accepted)

- 6 sources with jiggle maps
- Linear LIR-Ldense fit over many decades
- But systematic offsets on resolved scales

PAPER II L_{gas}-L_{IR} on sub-kpc scales (Tan et al., accepted)

6 sources with jiggle maps

LIR/Ldense - LIR trends on sub-kpc scales

- Linear LIR-Ldense fit over many decades
- But systematic offsets on resolved scales

PAPER II L_{gas} - L_{IR} on sub-kpc scales (Tan et al., accepted)

- 6 sources with jiggle maps
- Linear LIR-Ldense fit over many decades
- But systematic offsets on resolved scales

LIR/Ldense - LIR trends on sub-kpc scales

MALATANG

LIR/Ldense no clear trend with dense gas fraction - but systematic offsets seen

PAPER III Dense gas exctiation vs environment (Jiang et al., in prep

- Large variations in HCN/HCO+
- Radial HCN/HCO+ and CO(3-2) profiles
- Radial SFE, f_{dense} profiles
- L_{IR} dependence?
- Density variations?

PAPER IV Liu et al., in prep

Pixel-to-pixel comparison of SPIRE- Pixel-to-pixel LVG modelling FTS high-J CO and HCN/HCO+

Distributed L_{IR} (SFR)

PAPER IV Liu et al., in prep

Pixel-to-pixel comparison of SPIRE- Pixel-to-pixel LVG modelling FTS high-J CO and HCN/HCO+

104 AC 3.6 IRAC 4.5 [Jy] 0253 NGC 10³ Offset (-1,-1) z = 0.000B11Continuum Flux 10² dL = 3.33 Mpc 10¹ 10° 5 कि कि 10-1 **ISE 22** PACS 70 10⁻² 10⁻³ 100 10 1000 104 Observing Wavelength $[\mu^{--1}]$ 104 T T T T T T T T T [Jy] NGC 0253 10^{3} Offset (0,0) z = 0.000811市山 Flux 10² dL = 3.33 Mpc**PACS 100 PACS 160** SPIRE 250 101 unnu 100 0-1 10⁻² Cont 10⁻³ 10 100 1000 104 FTS CO(6-5) FTS CO(5-4) O(7-6) Observing Wavelength $[\mu m]$

Distributed L_{IR} (SFR)

FOLLOW-UP WORK

Continuum Observations:

JCMT SCUBA-2 maps of MALATANG sources M18AP056: NGC1365, IC342, MAFFEI2, NGC1068

IRAM-30m NIKA2 maps @ 2mm

Band	Number of KIDs	Wavelength	Bandwidth	NEFD	HPBW	FoV
NIKA2 2 mm/150 GHz	1020	2.00 mm	125-170 GHz	20 mJy*s ^{1/2}	18"	6.5'
NIKA2 1 mm/260 GHz	2x1140	1.15 mm	240-280 GHz	30 mJy*s ^{1/2}	12"	6.5'

APEX ArTeMIS 350micron maps (raster/spiral mode maps or onthe-fly mode). Beam 8.5" (so ~3× better than Herschel)

~50% of MALATANG sources are observablee with APEX

2'×2' ArTeMIS map, 1hr integration:

•		
Good weather	Poor weather	Average weather
pwv =0.2 mm	pwv =0.8 mm	pwv =0.5 mm
41.9 mJy/beam	119.2 mJy/beam	71.6 mJy/beam

FOLLOW-UP WORK

Heterodyne Observations:

- ▶ JCMT HARP CO(3-2) follow-up
- ▶ IRAM-30m (HERA, EMIR)
- Nobeyama 45m

▶ GBT

High resolution ALMA, NOEMA and SMA maps

APEX (high-J lines)

SUMMARY

- MALATANG observing is done!
- Careful data reduction
 - Developed an independent DR pipeline
 - Final data-products
 - Off-nuclear HCN/HCO+ lines weaker than anticipated
- 3 MALATANG papers accepted by the end of 2018
 - Survey & DR paper
 - Dense gas relation on sub-kpc scales, first results from 6 jiggle maps
 - Radial HCN/HCO+ excitation
- More papers and follow-up proposals in the works

THANK YOU

