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| sl First measurements of the -
| magnetic field strength
; f~ ~ in the Pillars of Creation
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BISTRO: Overview BISTRB

A JCMT Large Program mapping nearby star-forming regions in polarized light

>120 survey members across 6 partner regions and the East Asian Observatory

P.I.s: Derek Ward-Thompson (UK), Keping Qiu (China), Tetsuo Hasegawa
(Japan), Woojin Kwon (Korea), Shih-Ping Lai (Taiwan), Pierre Bastien (Canada)

BISTRO-1 and -2 awarded 448 hours of observing time to map:
Ophiuchus, Orion A & B, Perseus, Serpens Main and Aquila, Taurus
L.1495/B211, Auriga, IC5146, M16, DR15, DR21, NGC 2264, NGC 6334, Mon
R2, Rosette

Survey paper: Ward-Thompson et al. 2017, ApJ 842 66
Orion A: Pattle et al. 2017, ApJ 846 122

Ophiuchus A: Kwon et al. 2018, ApJ 859 4

M16: Pattle et al. 2018, ApJ 860 L6

Ophiuchus B: Soam et al. 2018, ApJ 861 65



BISTRO: Scientific Goals it

* To map the magnetic field within cores and filaments, on scales of ~1000-
5000 AU

* To determine magnetic field strengths in nearby molecular clouds using the
Chandrasekhar-Fermi method (through synthesis with Gould Belt Survey
HARP data)

* To investigate the relative importance of magnetic fields and turbulence to star
formation

* To test the model of magnetic funnelling of material onto filaments (André et
al. 2013; Palmeirim et al. 2013)

e To investigate the role of magnetic fields in shaping protostellar evolution

« To investigate the effect of magnetic fields on bipolar outflows from young
protostars



What is the role of magnetic fields in
star formation?

“The argument in the past has frequently been a process of elimination: one observed
certain phenomena, and one investigated what part of the phenomena could be explained;
then the unexplained part was taken to show the effects of the magnetic field. It is clear in

this case that, the larger one’s ignorance, the stronger the magnetic field.”
— Lodewijk Woltjer, 1966



Magnetically-dominated paradigm:

Cores form in a magnetically subcritical environment (magnetic field
strong enough to support against gravitational collapse) and evolve to
gravitational instability slowly, through ambipolar diffusion

Girart et al. 2006, Science 313 812
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Turbulence-dominated paradigm:

» Cores form in a magnetically supercritical environment (magnetic field
not strong enough to support against gravitational collapse). Molecular
clouds form at stagnant points at the intersection of supersonic turbulent
flows in the ISM. Stars form in regions in which turbulence has
dissipated. o ALMA

» Magnetic fields cannot stop collapse, but can
contribute to the support of regions in the later
stages of collapse.

* Modelled by, e.g. Padoan & Nordlund 1999,
MacLow & Klessen 2004.

» Magnetic field should not show hourglass
morphology (e.g. Hull et al. 2017)

Hull et al. 2017, ApJ 842 19



The usual argument:

What drives the physics of star
formation: magnetism, turbulence or
gravity?

Today’s question:

What happens if you take
magnetised gas and give it a
(somewhat orderered) shove?



Classical HII
Regions

“Their gas is ionized globally,
often by several ionizing
sources. It expands
hydrodynamically as a whole
and disrupts the parent
molecular cloud, revealing
both the embedded high-
mass and lower mass stellar
population for optical and
near-IR observations”

— Zinnecker & Yorke 2007,
ARA&A 45 481

NGC 604: NASA/HST archive



Sequential/triggered star formation
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—GMC

* Low mass population of YSOs forming within cloud

’r=4xIOEyr5

2) ‘ HII Region

' First OB subgroup forms in cloud

Lada 1987 IAUS 115 1
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Expanding Naked Association: Fossil GMC

Lada 1987 IAUS 115 1




Photoionized columns

» Formed at the interface between
an HII region and its parent
molecular cloud

e Column of dense molecular gas
protrudes into ionized region

e Formation mechanism disputed:
do they form behind pre-existing
overdensities or through
instabilities in the shock front?

e Erosion by HII region: potential
sites of triggered star formation?

Horsehead Nebula; NASA/HST archive



Cometary globules

* Isolated clumps of molecular
gas within HII regions ot

* Irradiated by the ionizing
source, show a bright rim
and a comet-like tail

e Often sites of active (low-
mass) star formation

* The future of photoionized
columns? (e.g. Bertoldi &
McKee 1993)

CG 4; CEDIC Team
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M16: The Eagle Nebula

e High-mass star-forming region
e HII region driven by NGC 6634 cluster
e Distance: 1.8+0.2 kpC (Dufton et al. 2006)

* The “Pillars of Creation”: photoionized columns
famously imaged by the Hubble Space
Telescope (ester et al. 1996)
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Declination (J2000)
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The magnetic field within the

pillars:

» is parallel to the axis of the
pillars

 is ~ perpendicular to the
magnetic field in the HII region

* is ordered

e Shows hints of depolarization
at the pillar tips (reversal of
direction?)
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Chandrasekhar-Fermi Method

Assumes equipartition between non-thermal motions and the magnetic
field: deviation in angle from the mean field direction is taken to be the
result of distortion of the field by small-scale non-thermal motions (see
Davis 1951; Chandrasekhar & Fermi 1953).
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Magnetic field strength in Pillar II:

2 O — 14.40
. H(Hz) ~ 5 X 104 cm:3 (Ryutov et al. 2005)

e Av~1.1-2.1 km/s (White et al. 1999)

= BPO$ ~ 170 — 320 uG
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These results are qualitatively
consistent with simulations of the
compression of weakly magnetized
dense gas to form pillars.

However, these simulations have to
date been either low-resolution or
two-dimensional.
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Energetics:

Magnetic pressure: P, = B?/8x
P_/k = (0.9 - 3.0)x10" K cm™

HII region ablation pressure: ~1.6x10% K cm™ (Ryutov 2005)
* The pillar head is being ablated by the interaction with the HII region

Thermal internal pressure: P, = nkT ~ 1x10° K cm™ (T = 20 K)
Non-thermal internal pressure: P . =nkT _~(0.4-1.5)x10"K cm™

(Taking White et al. 1999 velocity dispersions and u=2.8)
* Non-thermal internal pressure dominates

Non-thermal external pressure: P =nkT _ ~(0.4-1.5)x10"K cm™

(n=2n(H)=400 cm?3, e.g. Williams 2007; T=8000 K, Hester et al. 1996;
velocity dispersion 11.5 km s, Higgs et al. 1979)
 Thermal external pressure considerably lower



Energetics:

Ostriker (1964) filament stability: (M/L) . = 2¢?/G

Forc .. =0.5-0.9 km s' (White et al. 1999),

s,eff

(M/L)_,, = 120 - 400 M_pc™

Estimated line mass of Pillar II:

If Pillar II has radius ~ 0.15 pc and n ~ 5X10% cm?,
(M/L) = pm nmnr?® ~ 250 M _pc™, assuming cylindrical symmetry

Could Pillar IT be marginally gravitationally unstable?



Energetics analysis suggests:

* The magnetic field cannot prevent the pillar heads being ablated by the
HII region unless it is significantly compressed on small scales

» The pillar walls are in approximate pressure equilibrium, with magnetic
pressure and non-thermal internal gas pressure being balanced by non-
thermal external gas pressure and non-negligible self-gravity

(a) Shock approach (b) Pillar formation (c) Pillar erosion




Summary

e We have performed the first observations of the magnetic field in the
dense gas of the Pillars of Creation

* The magnetic field runs parallel to the Pillars’ lengths, and approximately
perpendicular to the field in the surrounding photoionized region

« We find a magnetic field strength B, ~ 170 — 320 uG in Pillar II

e This value is larger than that permitted by models where fields are
aligned by RDI effects, but could have been created by compression of an
initially dynamically negligible field in pillar formation

e Our results suggest that the pillar walls are in magnetically-supported
equilibrium with their surroundings, while the pillar heads are being
eroded by the shock interaction

 For more details see Pattle et al. 2018 ApJ 860 L6

Thank you!
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