Introduction to Radio/sub-mm Astronomy Xue-Jian Jiang (蒋雪健) Dec. 01, 2020

Literature

- Essential Radio Astronomy https://science.nrao.edu/opportunities/courses/era
- Tools of Radio Astronomy

Summer schools (slides available)

- NRAO: https://science.nrao.edu/science/meetings/2015/summer-schools \bullet
- IRAM: <u>https://publicwiki.iram.es/SummerSchools</u>
- ASIAA: https://events.asiaa.sinica.edu.tw/school/20160815/program.php \bullet

This presentation have used materials from different literature, please click on texts with underline for links.

LIBRARY

James J. Condon & Scott M. Ransom

Questions

- What is the radio/submm atmosphere window?
- What is special about the radio/submm band?
- What astrophysical process produce radio/submm signal?
- How to do radio/submm observations?

The Radio Window v ~ 10 MHz to 1 THz

History of Radio Astronomy

See: <u>History of Radio Astronomy - NASA</u> <u>History of Radio Astronomy</u> a previous talk by Harriet Parsons

History of Radio Astronomy

- Karl Jansky 1932

See: <u>History of Radio Astronomy - NASA</u> <u>History of Radio Astronomy</u> a previous talk by Harriet Parsons

Problem: Noise interfering with short-wave radio communication

Discovery: "clouds of 'cosmic dust' in that direction..." (Milky Way)

History of Radio Astronomy

See: <u>History of Radio Astronomy - NASA</u> <u>History of Radio Astronomy</u> a previous talk by Harriet Parsons

Maunakea: The best site for sub-mm observations in the Northern hemisphere

Maunakea: The best site for sub-mm observations in the Northern hemisphere

And the state of t

PWV ~ 4.58 mm **Band 4/5 Boundary**

See talk "band-5 proposals"

PWV: 2.58 mm 600 700

PWV ~ 2.58 mm **Band 3/4 Boundary**

PWV ~ 1.58 mm **Band 2/3** Boundary

PWV: 0.83 mm 600 700

PWV ~ 0.83 mm **Band 1/2 Boundary**

PWV ~ 0.58 mm Band 1 **Boundary**

> High freq. requires **better weather!**

Atmospheric Transmission: Mauna Kea 100 80 (%)- 40 Pronsmission P 20 0 **SCUBA2** 400 300 200 500 850 µm Frequency (GHz) `Ū`ū & HARP

PWV: 0.58 mm

PWV ~ 0.58 mm Band 1 **Boundary**

High freq. requires better weather!

Atmospheric Transmission: Mauna Kea

PWV: 0.58 mm

PWV ~ 0.58 mm Band 1 **Boundary**

Telescope	Altitude	Frequencies
LSBERG 100m	320	<90 GHz
ATCA	240	<105 GHz
GBT	320	<115 GHz
MA/IRAM 30M	2500/2800	< 380 GHz
SMA 8	4030	<700 GHz
LMT	4600	<350 GHz
ALMA 50	5000	<1000 GHz

High freq. requires better weather!

Questions

- What is the radio/submm atmosphere window? a very broad and transparent observing window
- What is special about the radio/submm band?
- What is the astrophysical source of radio/submm signal?
- How to do radio/submm observations?

Questions

- What is the radio/submm atmosphere window? a very broad and transparent observing window
- What is special about the radio/submm band?
- What astrophysical process produce radio/submm signal?
- How to do radio/submm observations?

Sub-mm vs. Visual Wavelength Astronomy - Similarities

- Types of observations essentially same:
 - Continuum
 - Spectral line
 - Polarization
 - Timing / variability
 - Combinations of some / all of the above

• Still uses curved reflecting surfaces, classical optical paths, etc. "Light" still generally treated as waves (c.f. X-ray astronomy). Still need to characterize focus, pointing, etc.

Sub-mm vs. Visual Wavelength Astronomy - Differences

- Probes different environments (e.g. diffuse gas/dust vs. starlight)
- Due to wavelength (frequency) range covered, necessitates use of strange mixture of instrument technologies from radio & infrared astronomy
- Because of this, many (but not all...) concepts & terminology (e.g. beam, T_A*) derive from radio astronomy
- Example: preserve phase -> interferometry

The Radio Sky Both Day and Night

.

2MASS near-IR

http://www.ipac.caltech.edu/2mass/gallery/showcase/galcen/index.html

Naval Research Laboratory

Wide-Field Radio Image of the Galactic Center $\lambda = 90 \ cm$

(Kassim, LaRosa, Lazio, & Hyman 1999)

7 Threads

Sgr D SNR

Sgr D HII

SNR 0.9+0.1

Sgr B2

Sgr B1

Arc

New Feature: The Cane

> Threads

Sgr E

Sgr A

New thread: The Pelican Sgr C Coherent structure?

Mouse

Snake

SNR 359.0-00.9

SNR 359.1-00.5

~0.50 ~75 pc ~240 light years

<u>http://www.astro.ucla.edu/~ghezgroup/gc/journey/wave.shtml</u> Image processing at the Naval Research Laboratory using DoD High Performance Computing Resources Produced by N.E. Kassim, D.S. Briggs, T.J.W. Lazio, T.N. LaRosa, J. Imamura, & S.D. Hyman Original data from the NRAO Very Large Array courtesy of A. Pedlar, K. Anantharamiah, M. Goss, & R. Ekers

NRAO/AUI/NSF

https://public.nrao.edu/gallery/saturn-in-radio-waves/ NRAO/AUI/NSF

What is special about long wavelengths? More specific

- The dusty interstellar medium (ISM) is nearly transparent ($\lambda >> D_{dust}$)
- Cold sources emit most photons at low frequency
 - ~mm photons are very abundant in the spectrum of the universe
 - Abundant cold dust/atomic/molecular emission in (sub)mm band
- Easy to observe high-redshift galaxies in sub-mm

~mm photons are very abundant in the spectrum of the universe

Spectral line forest in molecular cloud (~230 GHz)

FIG. 1.-Compressed view of the OVRO spectral line survey of OMC-1

What is special about long wavelengths? **Discoveries: It revealed a "parallel universe"**

- The violent universe of SMBHs (Quasar)
- Emission from cool interstellar gas (HI, OH, CO)
- The cosmic microwave background (CMB)
- Neutron stars (Pulsar)
- Cosmological evolution lacksquare
- Nonthermal radiation
- Aperture Synthesis (interferometry) \bullet
- Maser
-

- Ø of multi-wavelength astronomy.
- Retains unique astronomical and technical features

Radio astronomy is no longer a separate and distinct field, it is part

Galaxy M87

- of multi-wavelength astronomy.
- Retains unique astronomical and technical features

Radio astronomy is no longer a separate and distinct field, it is part

 $\lambda = 1.3 \text{ mm}$ ~0.01 light years **Event Horizon Telescope**

- 1964: Haystack 37-m tel. (λ >6mm)
- 1965: Green Bank 140ft telescope (λ >6mm)
- 1969: Kitt Peak 36'/12m telescope (λ >1mm)
- 1970: Effelsberg 100m telescope (λ >3mm)
- 1982: Nobeyama 45m telescope (λ >2mm)
- 1984: IRAM 30m telescope (λ >0.8mm)
- 1987: JCMT 15m telescope (λ >0.3mm)
- 1988: CSO 10.4m telescope (λ >0.3mm)
- 1990: IRAM Plateau de Bure Interferometer (λ >0.8mm)
- 2000: GBT 105m telescope (λ>3mm)
- 2004: APEX (λ>0.3mm)
- 2006: LMT (λ>0.8mm)
- 2012: ALMA (λ>0.1mm)
- 2014: NOEMA (λ>0.8mm)
- FUTURE?

- 1964: Haystack 37-m tel. (λ>6mm)
- 1965: Green Bank 140ft telescope (λ >6mm)
- 1969: Kitt Peak 36'/12m telescope (λ >1mm)
- 1970: Effelsberg 100m telescope (λ >3mm)
- 1982: Nobeyama 45m telescope (λ >2mm)
- 1984: IRAM 30m telescope (λ >0.8mm)
- 1987: JCMT 15m telescope (λ >0.3mm)
- 1988: CSO 10.4m telescope (λ >0.3mm)
- 1990: IRAM Plateau de Bure Interferometer (λ >0.8mm)
- 2000: GBT 105m telescope (λ >3mm)
- 2004: APEX (λ>0.3mm)
- 2006: LMT (λ>0.8mm)
- 2012: ALMA (λ>0.1mm)
- 2014: NOEMA (λ>0.8mm)
- FUTURE?

- 1964: Haystack 37-m tel. (λ >6mm)
- 1965: Green Bank 140ft telescope (λ >6mm)
- 1969: Kitt Peak 36'/12m telescope (λ >1mm)
- 1970: Effelsberg 100m telescope (λ >3mm)
- 1982: Nobeyama 45m telescope (λ >2mm)
- 1984: IRAM 30m telescope (λ >0.8mm)
- 1987: JCMT 15m telescope (λ >0.3mm)
- 1988: CSO 10.4m telescope (λ >0.3mm)
- 1990: IRAM Plateau de Bure Interferometer (λ >0.8mm)
- 2000: GBT 105m telescope (λ >3mm)
- 2004: APEX (λ>0.3mm)
- 2006: LMT (λ>0.8mm)
- 2012: ALMA (λ>0.1mm)
- 2014: NOEMA (λ>0.8mm)
- FUTURE?

- 1964: Haystack 37-m tel. (λ >6mm)
- 1965: Green Bank 140ft telescope (λ >6mm)
- 1969: Kitt Peak 36'/12m telescope (λ >1mm)
- 1970: Effelsberg 100m telescope (λ >3mm)
- 1982: Nobeyama 45m telescope (λ >2mm)
- 1984: IRAM 30m telescope (λ >0.8mm)
- 1987: JCMT 15m telescope (λ >0.3mm)
- 1988: CSO 10.4m telescope (λ >0.3mm)
- 1990: IRAM Plateau de Bure Interferometer (λ>0.8mm)
- 2000: GBT 105m telescope (λ >3mm)
- 2004: APEX (λ>0.3mm)
- 2006: LMT (λ>0.8mm)
- 2012: ALMA (λ>0.1mm)
- 2014: NOEMA (λ>0.8mm)
- FUTURE?

- 1964: Haystack 37-m tel. (λ >6mm)
- 1965: Green Bank 140ft telescope (λ >6mm)
- 1969: Kitt Peak 36'/12m telescope (λ >1mm)
- 1970: Effelsberg 100m telescope (λ >3mm)
- 1982: Nobeyama 45m telescope (λ >2mm)
- 1984: IRAM 30m telescope (λ >0.8mm)
- 1987: JCMT 15m telescope (λ >0.3mm)
- 1988: CSO 10.4m telescope (λ >0.3mm)
- 1990: IRAM Plateau de Bure Interferometer (λ >0.8mm
- 2000: GBT 105m telescope (λ >3mm)
- 2004: APEX (λ>0.3mm)
- 2006: LMT (λ>0.8mm)
- 2012: ALMA (λ>0.1mm)
- 2014: NOEMA (λ>0.8mm)
- FUTURE?

Some sub-mm Telescopes

- 1964: Haystack 37-m tel. (λ>6mm)
- 1965: Green Bank 140ft telescope (λ >6mm)
- 1969: Kitt Peak 36'/12m telescope (λ >1mm)
- 1970: Effelsberg 100m telescope (λ >3mm)
- 1982: Nobeyama 45m telescope (λ >2mm)
- 1984: IRAM 30m telescope (λ>0.8mm)
- 1987: JCMT 15m telescope (λ >0.3mm)
- 1988: CSO 10.4m telescope (λ >0.3mm)
- 1990: IRAM Plateau de Bure Interferometer (λ>0.8mm)
- 2000: GBT 105m telescope (λ >3mm)
- 2004: APEX (λ>0.3mm)
- 2006: LMT (λ>0.8mm)
- 2012: ALMA (λ>0.1mm)
- 2014: NOEMA (λ>0.8mm)
- FUTURE?

Telescopes evolve!

Telescopes evolve!

 More in low freq: LOFAR
 SKA (ASKAP, MeerKAT)
 JVLA

Questions

- What is the radio/submm atmosphere window? a very broad and transparent observing window
- What is special about the radio/submm band? — It revealed a "parallel universe"
- What astrophysical process produce radio/submm signal?
- How to do radio/submm observations?

Questions

- What is the radio/submm atmosphere window?
 a very broad and transparent observing window
- What is special about the radio/submm band?
 It revealed a "parallel universe"
- What astrophysical process produce radio/submm signal?
- How to do radio/submm observations?

Radio Emission Mechanisms Thermal emission - continuum

Radio Emission Mechanisms Thermal emission - continuum

- lower frequencies, including in the sub-mm

Radio Emission Mechanisms Thermal emission - continuum

- lower frequencies, including in the sub-mm

Radio Emission Mechanisms Easy to observe high-z galaxies in sub-mm (negative k-correction)

Radio Emission Mechanisms Easy to observe high-z galaxies in sub-mm (negative k-correction)

Radio Emission Mechanisms Greybody, free-free & Synchrotron

Radio Emission Mechanisms Spectral line emission

- Molecular Lines CO, CS, H₂O, SiO, etc.
 - gas physical conditions (n, T)
 - kinematics (Doppler Effect)

Continuum/spectral lines trace Different phases of ISM

Continuum/spectral lines trace Different phases of ISM

JCMT / HARP 12CO (3-2)

Continuum/spectral lines trace Different phases of ISM

JCMT / SCUBA-2

Continuum/spectral lines trace different phases of ISM

Radio Emission Mechanisms Polarization

Magnetic Fields Align Non-Spherical Dust Grains...

By looking at polarized light, we can "see" magnetic fields!

True in visible, IR, sub-mm, etc.

https://www.edmundoptics.com/resources/application-notes/optics/introduction-to-polarization/

Use of diplexer => we only measure one polarization

https://www.edmundoptics.com/resources/application-notes/optics/introduction-to-polarization/

Use of diplexer => we only measure one polarization

https://www.edmundoptics.com/resources/application-notes/optics/introduction-to-polarization/

Two receivers can measure the total intensity and polarization

https://www.edmundoptics.com/resources/application-notes/optics/introduction-to-polarization/

Two receivers can measure the total intensity and polarization

Radio Emission Mechanisms Polarization

And yes: it works!

SCUBA-2 / POL-2 <u>Credit: BISTRO Large Program</u> <u>Consortium</u>

Questions

- What is the radio/submm atmosphere window? a very broad and transparent observing window
- What is special about the radio/submm band? - It revealed a "parallel universe"
- What astrophysical process produce radio/submm signal? - free-free, dust, atomic/molecular lines ... — temperature, density, magnetic field … – see talk "JCMT Science"
- How to do radio/submm observations?

Questions

- What is the radio/submm atmosphere window? a very broad and transparent observing window
- What is special about the radio/submm band? - It revealed a "parallel universe"
- What astrophysical process produce radio/submm signal? — free-free, dust, atomic/molecular lines ... - temperature, density, magnetic field ... see talk "JCMT Science"
- How to do radio/submm observations?

How to do radio/submm observations?

Some Definitions

- T_b and T_{mb} (see talk "<u>Heterodyne calibration</u>")
- <u>Antenna temperature</u> T_A
- System temperature T_{sys}
- Sensitivity and Noise
- Intensity and Flux
- Observing Modes and Switching Modes
- Spectral resolution
- Angular resolution (Beam size, confusion)
- FOV ...

HARP obs modes SCUBA-2 obs modes

How to do (sub)mm spectral line observations with the JCMT? Let's imagine a proposal...

How to do (sub)mm spectral line observations with the JCMT? Let's imagine a proposal...

• One wants to observe CS in NGC 253 with the JCMT

- One wants to observe CS in NGC 253 with the JCMT
- **Motivation**: Compare excitation conditions, calculate abundance ... (need A GOOD NARRATIVE)

- One wants to observe CS in NGC 253 with the JCMT
- **Motivation**: Compare excitation conditions, calculate abundance ... (need A GOOD NARRATIVE)
- CS (J=3-2) ~ 0.10 K in M 82 (by <u>IRAM 30-m</u>) ~ 0.15 K in NGC 253 CS (J=5-4) ~ 0.058 K in M82

- One wants to observe CS in NGC 253 with the JCMT
- **Motivation**: Compare excitation conditions, calculate abundance ... (need A GOOD NARRATIVE)
- CS (J=3-2) ~ 0.10 K in M 82 (by <u>IRAM 30-m</u>) ~ 0.15 K in NGC 253 CS (J=5-4) ~ 0.058 K in M82
- One assumes that CS (J=5-4) ~ 0.06 K in NGC 253

- One wants to observe CS in NGC 253 with the JCMT
- **Motivation**: Compare excitation conditions, calculate abundance ... (need A GOOD NARRATIVE)
- CS (J=3-2) ~ 0.10 K in M 82 (by <u>IRAM 30-m</u>) ~ 0.15 K in NGC 253 CS (J=5-4) ~ 0.058 K in M82
- One assumes that CS (J=5-4) ~ 0.06 K in NGC 253
- T_{A}^{*} (JCMT) = $T_{mb} \cdot \eta_{MB} \sim 0.04 \text{ K}$ RMS = $T_{A}^{*} / 5 = 0.008 \text{ K} = 8 \text{ mK}$

- One wants to observe CS in NGC 253 with the JCMT
- **Motivation**: Compare excitation conditions, calculate abundance ... (need A GOOD NARRATIVE)
- CS (J=3-2) ~ 0.10 K in M 82 (by <u>IRAM 30-m</u>) ~ 0.15 K in NGC 253 CS (J=5-4) ~ 0.058 K in M82
- One assumes that CS (J=5-4) ~ 0.06 K in NGC 253
- T_{A}^{*} (JCMT) = $T_{mb} \cdot \eta_{MB} \sim 0.04 \text{ K}$ RMS = $T_{A}^{*} / 5 = 0.008 \text{ K} = 8 \text{ mK}$
- 8 mK @ 2.5 km/s, require 0.6 hours 8 mK @ 5.0 km/s, require 0.3 hours 4 mK @ 5.0 km/s, require 1.2 hours use `Ū`ū in band-5 weather

- One wants to observe CS in NGC 253 with the JCMT
- **Motivation**: Compare excitation conditions, calculate abundance ... (need A GOOD NARRATIVE)
- CS (J=3-2) ~ 0.10 K in M 82 (by <u>IRAM 30-m</u>) ~ 0.15 K in NGC 253 CS (J=5-4) ~ 0.058 K in M82
- One assumes that CS (J=5-4) ~ 0.06 K in NGC 253
- T_{A}^{*} (JCMT) = $T_{mb} \cdot \eta_{MB} \sim 0.04 \text{ K}$ RMS = $T_{A}^{*} / 5 = 0.008 \text{ K} = 8 \text{ mK}$
- 8 mK @ 2.5 km/s, require 0.6 hours 8 mK @ 5.0 km/s, require 0.3 hours 4 mK @ 5.0 km/s, require 1.2 hours use `Ū`ū in band-5 weather

Let's imagine a proposal...

- One wants to observe CS in NGC 253 with the JCMT
- **Motivation**: Compare excitation conditions, calculate abundance ... (need A GOOD NARRATIVE)
- CS (J=3-2) ~ 0.10 K in M 82 (by <u>IRAM 30-m</u>) ~ 0.15 K in NGC 253 CS (J=5-4) ~ 0.058 K in M82
- One assumes that CS (J=5-4) ~ 0.06 K in NGC 253
- T_{A}^{*} (JCMT) = $T_{mb} \cdot \eta_{MB} \sim 0.04 \text{ K}$ RMS = $T_{A}^{*} / 5 = 0.008 \text{ K} = 8 \text{ mK}$
- 8 mK @ 2.5 km/s, require 0.6 hours 8 mK @ 5.0 km/s, require 0.3 hours 4 mK @ 5.0 km/s, require 1.2 hours use `Ū`ū in band-5 weather

• Stare mode, Position-Switch (observing modes)

- One wants to observe CS in NGC 253 with the JCMT
- **Motivation**: Compare excitation conditions, calculate abundance ... (need A GOOD NARRATIVE)
- CS (J=3-2) ~ 0.10 K in M 82 (by <u>IRAM 30-m</u>) ~ 0.15 K in NGC 253 CS (J=5-4) ~ 0.058 K in M82
- One assumes that CS (J=5-4) ~ 0.06 K in NGC 253
- T_{A}^{*} (JCMT) = $T_{mb} \cdot \eta_{MB} \sim 0.04 \text{ K}$ RMS = $T_{A}^{*} / 5 = 0.008 \text{ K} = 8 \text{ mK}$
- 8 mK @ 2.5 km/s, require 0.6 hours 8 mK @ 5.0 km/s, require 0.3 hours 4 mK @ 5.0 km/s, require 1.2 hours use `Ū`ū in band-5 weather

- Stare mode, Position-Switch (observing modes)
- The resolution is different from 30-m! (Beam, filling factor)

- One wants to observe CS in NGC 253 with the JCMT
- **Motivation**: Compare excitation conditions, calculate abundance ... (need A GOOD NARRATIVE)
- CS (J=3-2) ~ 0.10 K in M 82 (by <u>IRAM 30-m</u>) ~ 0.15 K in NGC 253 CS (J=5-4) ~ 0.058 K in M82
- One assumes that CS (J=5-4) ~ 0.06 K in NGC 253
- T_{A}^{*} (JCMT) = $T_{mb} \cdot \eta_{MB} \sim 0.04 \text{ K}$ RMS = $T_{A}^{*} / 5 = 0.008 \text{ K} = 8 \text{ mK}$
- 8 mK @ 2.5 km/s, require 0.6 hours 8 mK @ 5.0 km/s, require 0.3 hours 4 mK @ 5.0 km/s, require 1.2 hours use `Ū`ū in band-5 weather

- Stare mode, Position-Switch (observing modes)
- The resolution is different from 30-m! (Beam, filling factor)
- Can we cover other line(s) in the same spectral band?

- One wants to observe CS in NGC 253 with the JCMT
- **Motivation**: Compare excitation conditions, calculate abundance ... (need A GOOD NARRATIVE)
- CS (J=3-2) ~ 0.10 K in M 82 (by <u>IRAM 30-m</u>) ~ 0.15 K in NGC 253 CS (J=5-4) ~ 0.058 K in M82
- One assumes that CS (J=5-4) ~ 0.06 K in NGC 253
- T_{A}^{*} (JCMT) = $T_{mb} \cdot \eta_{MB} \sim 0.04 \text{ K}$ RMS = $T_{A}^{*} / 5 = 0.008 \text{ K} = 8 \text{ mK}$
- 8 mK @ 2.5 km/s, require 0.6 hours 8 mK @ 5.0 km/s, require 0.3 hours 4 mK @ 5.0 km/s, require 1.2 hours use `Ū`ū in band-5 weather

- Stare mode, Position-Switch (observing modes)
- The resolution is different from 30-m! (Beam, filling factor)
- Can we cover other line(s) in the same spectral band?
- Data reduction

How to do (sub)mm spectral line observations with the JCMT?

Let's imagine a proposal...

- One wants to observe CS in NGC 253 with the JCMT
- **Motivation**: Compare excitation conditions, calculate abundance ... (need A GOOD NARRATIVE)
- CS (J=3-2) ~ 0.10 K in M 82 (by <u>IRAM 30-m</u>) ~ 0.15 K in NGC 253 CS (*J*=5–4) ~ 0.058 K in M82
- One assumes that CS (J=5-4) ~ 0.06 K in NGC 253
- T_{A}^{*} (JCMT) = $T_{mb} \cdot \eta_{MB} \sim 0.04 \text{ K}$ $RMS = T_A^* / 5 = 0.008 \text{ K} = 8 \text{ mK}$
- 8 mK @ 2.5 km/s, require 0.6 hours 8 mK @ 5.0 km/s, require 0.3 hours 4 mK @ 5.0 km/s, require 1.2 hours use `Ū`ū in band-5 weather ITC
- Stare mode, Position-Switch (observing modes)
- The resolution is different from 30-m! (Beam, filling factor)
- Can we cover other line(s) in the same spectral band? **Observing Tool**
- Data reduction

Starlink

Intro to JCMT

Please refer to other talks & tutorials!

Questions

- What is the radio/sub-mm atmosphere window? a very broad and transparent observing window
- What is special about the radio/sub-mm band? - It revealed a "parallel universe"
- What astrophysical process produce radio/sub-mm signal? - free-free, dust, atomic/molecular lines ... - temperature, density, magnetic field ... – see talk "JCMT Science"
- How to do radio/sub-mm observations? — understand the telescope and go for your science!

Goal

- Only a brief introduction
- submm observations.

to recognize when radio/submm observations might help solve an astrophysical problem, and to design, propose, and analyze radio/