SCUBA-2 Photometry of X-ray Binary Jets

Dr. Alex Tetarenko East Asian Observatory

Relativistic Jets Launched From Black Holes

Black Hole X-ray Binaries

108 10 ¹¹ 10 ¹² 10 ¹⁴ 10 ¹⁵ 10 ¹⁶ 10 ¹⁸ 10 ¹⁹ Radio Submillimetre (sub-mm) Infrared (IR) Optical (Opt) Ultraviolet (UV) Soft X-ray Hard X-ray	Frequency (Hz)>								
RadioSubmillimetreInfraredOpticalUltravioletSoftHard(sub-mm)(IR)(Opt)(UV)X-rayX-ray	1	0 ⁸ '	10 ¹¹ 10) ¹² 1	0 ¹⁴ 1	0 ¹⁵ 1	0 ¹⁶ 10) ¹⁸ 10) 19
		Radio	Submillimetre (sub-mm)	Infrared (IR)	Optical (Opt)	Ultraviolet (UV)	Soft X-rav	Hard X-ray	

 Black hole accreting matter from a companion star

 Rapidly evolve through bright outburst periods on timescales of days to months

• Emit across the electromagnetic spectrum

Outburst and Jet Behaviour

Hard State Compact Jets

Broad-band Spectrum

- Originates from superposition of many synchrotron components along jet axis
- Jet properties encoded within exact spectral shape
- Key observables: spectral indices, location of spectral break

Jet Spectral Breaks

- Location evolves as accretion properties change during outburst
- Evolution contrary to simple jet models
- Correlates with X-ray photon index

Jet Spectral Breaks

- Location evolves as accretion properties change during outburst
- Evolution contrary to simple jet models
- Correlates with X-ray photon index

Relativistic Jet Simulations

- Broad-band
 observations needed
 to test and guide
 simulations
- Tie jet dynamics, plasma conditions to the jet spectral break

New solutions in agreement with observed spectral break evolution!

(Sub)-Millimetre Frequencies

- Fill 2 order of magnitude gap in broad-band spectrum
- Uniquely probe jet emission close to compact object
- Need rapid response ToOs to obtain data of X-ray binaries.

Target Source: V404 Cygni

- Prolonged quiescent period of 26 yrs.
- Well determined system parameters
- Low optical extinction
- Parallax distance

Lab Procedure

- Reduce a JCMT SCUBA-2 observation of V404 Cygni during the decay of its 2015 outburst.
- Combine your SCUBA-2 sub-mm measurement with other simultaneous multiwavelength data to build a broad-band spectrum.
- Fit different emission models to your spectrum to deduce jet properties.

Additional Notes

- Follow the detailed procedure in the lab writeup for reducing your data.
- You will NEED to FIRST download the data!
- You will NEED to have the Starlink software installed on your machine.
- This lab involves some coding, don't freak out if you haven't done any coding before!
- All coding and analysis should be done in the jupyter notebook provided.

What do you need to hand in?

- Please email me your lab writeup and jupyter notebook
- Please use the subject line: UH Labs XRB Spectrum – [NAME]
- My email is: <u>a.tetarenko@eaobservatory.org</u>
- Questions? Email me! Thanks!

