A New Feature in the POL2MAP script

A new parameter called SMOOTH450 has been added to the pol2map script (used for processing POL2 data). It is only accessed when processing 450 um data and defaults to False, which results in no changes to the behaviour of pol2map. If SMOOTH450 is set to True, pol2map performs an additional smoothing that results in the resolution of the resulting I, Q and U coadds (and the vector catalogue) being degraded to the resolution expected for 850 um data. This allows 450 and 850 um results to be compared more easily. A side-effect of the smoothing is that the noise levels in the final 450 um maps and catalogues is lower.

The smoothing is applied to the I, Q and U maps made from each individual observation before using them to form the I, Q and U coadds. The same smoothing kernel is used for I, Q and U and is formed by deconvolving the expected 850 um beam shape using the expected 450 um beam shape as the PSF (Point Spread Function). The “expected” beam shapes are two-component Gaussians as described in “SCUBA-2: on-sky calibration using submillimetre standard sources” (Dempsey et al, 2013, MNRAS, 430, 2534).

The following plot shows the the mean radial total intensity profile of 3C279 determined from 25 POL2 observations. The black curve shows the 450 um profile produced using SMOOTH450=NO (the default), the red curve shows the 450 um profile produced using SMOOTH450=YES and the blue curve shows the 850 um profile. It can be seen that the smoothed 450 curve is very similar to the 850 curve.

The following vector maps shows 450 um vectors created from four observations of DR21. The blue vectors were created with SMOOTH450=NO and the red vectors with SMOOTH450=YES (for comparison, the right hand map shows the same red vectors without the blue vectors). Both red and blue used the same selection criterion (i>5*di && dp <0.5 && dang < 10). The main difference is that there are many more red vectors than blue vectors. This is because the smoothing introduced by SMOOTH450 has reduced the noise level, thus allowing more vectors to pass the above selection criterion.

SMA fringe test with Nāmakanui a success

The JCMT had a successful fringe test yesterday with the SMA using the new instrument Nāmakanui; on loan at JCMT from ASIAA. The JCMT got fringes without problems which is really excellent news. This is good progress with an East Asian VLBI and Event Horizon Telescope run schedules in 2020. JCMT staff also confirmed the basic orientation of the lambda/4 plate – used for polarization measurements. Poor weather does mean there is still more to do, but congratulations to all involved. Staff are now looking to further testing of Nāmakanui at the EHT test run in January and for data taking during the March/April EHT campaign.

EHT Consortium meets in Hilo

The Event Horizon Telescope Consortium met in Hawai`i for the first time since the release of the first image of a Black Hole Pōwehi. The meeting took place at the Hilo Naniloa Hotel during the week of December 5th. In addition to the meeting a public talk by Dr. Ziri Younsi and Dr. Junhan was given on Friday December 6 at ‘Imiloa Astronomy Center’s planetarium.

A Change to the Format of NDF Data Files

Data files created at the JCMT are usually distributed in the Starlink NDF format (see “Learning from 25 years of the extensible N-Dimensional Data Format“). An NDF usually contains several arrays, each with a well defined purpose (data values, variances, quality flags, etc). However, each such array has in the past been limited in size to no more than 2,147,483,647 pixels (this is because the software used to access NDFs uses 32 bit signed integers to store pixel counts, etc). Recent work at the EAO has removed this limitation by changing the relevant libraries to use 64 bit integers instead of 32 bit integers. This is a necessary first step towards supporting future instruments that will produce much larger data arrays.

One consequence of this work is a small change to the way NDFs are stored on disk – the integer values that store the pixel origin of each array are now stored as 64 bit integers (type “_INT64”) rather than 32 bit integers (type “_INTEGER”). New NDFs created with these _INT64 values will be readable by software in the “2018A” Starlink release (July 2018) and subsequent nightly builds, but will not be readable by older versions of Starlink. However, NDFs in the new format can be converted to the old format by doing:

% setenv NDF_SHORTORIGIN 1
% kappa
% ndfcopy newndf.sdf oldndf.sdf

It should be noted that the changes described above do not mean that existing Starlink commands in packages such as Kappa or SMURF  can now be used to create or process huge NDFs. It just means that the NDF format itself, together with the infrastructure libraries needed to access  NDFs, are ready for the next stage in the process, which will be the modification of Kappa, SMURF, etc, to use the new facilities. The one exception is that the CUPID package has now been updated to use the new facilities and so should now be capable of handling huge NDFs.

The new features described above are present in the Starlink nightly build on or after 27th November 2019.

As a final note, this is all new stuff so please be on the look-out for any strange behaviour in the new version of Starlink and report it to EAO.

Maunakea Wonders Teacher Workshop 2019

October 30th, 2019 kicked off the fourth “Maunakea Wonders Teacher Workshop” in collaboration with the University of Hawaii Hilo Masters of Arts in Teaching program.  The “Maunakea Wonders Teacher Workshop” program gives participants a background on the existing Maunakea Observatories, the scientific discoveries being made, the engineering/instrumentation capabilities, the jobs and career paths available to our island’s students, and our Education and Public Outreach efforts. EAO staff had a great time talking story with the students and sharing hands-on activities that they can take back to their own classrooms. A big mahalo to Alyssa from Gemini Observatory for giving an ‘out of this world’ demonstration on how to use the portable starlab planetarium for many different lessons and age ranges. On Saturday, November 2nd participants had a fantastic time at the Imiloa Astronomy Center where they were treated to a custom planetarium show, a special cultural presentation with Kumu Leilehua Yuen, and a Maunakea Resource presentation by the Office of Maunakea Management.  On our final day in the classroom, November 13th, Senior Scientist Steve Mairs had us recreating the scale of our solar system with a golf ball. Telescope System Specialist Miriam Fuchs got us to do a dance battle between gravity and fusion. Our panel of five EAO/JCMT employees shared stories and experiences that set them on their career path. It’s been a fantastic workshop and we’ve had a blast connecting with these passionate soon-to-be teachers.

   

JCMT 2019 Users Meeting underway in Taiwan

The 2019 JCMT Users Meeting is underway at ASIAA in Taiwan. If you wish to watch the talks remotely please visit the program pages. This link will also provide the pdfs of the talk being given, and pdfs of the poster presentations. EAO staff members Mark Rawlings, Sarah Graves and Alex Tetarenko are there in person throughout the meeting to answer any questions you might have about JCMT observing and data analysis.

JCMT shifts to Remote Operations

JCMT has began a new era. Starting November 1st all data obtained at the JCMT will be observed remotely from Hilo. The first night of Remote Observing was staffed by JCMT Telescope Operator Mimi Fuchs.

JCMT astronomers who obtain data on a given night will now receive an automated email to inform them of observation being taken. At that time users are welcome to “eavesdrop” on operations by joining a remote connection directly to the JCMT Remote Observing Control room (JROC) in Hilo via the link provided in the automated email.

A serious bug in POL2MAP

A potentially serious bug has recently been found and fixed in the POL2MAP command.

Summary: If you run POL2MAP three times to produce a vector catalogue – once to create the auto-masked I map (step 1), once to create the externally-masked I map (step 2) and once to create the Q/U maps and vector catalogue (step 3) – and you set the BINSIZE parameter to a value larger than the PIXSIZE parameter (4 arc-seconds by default), then the I (total intensity) and P (polarisation) values in the final catalogue may be badly wrong (the angles in the vector catalogue are unaffected by this bug). But if you combine steps 2 and 3 into a single invocation of POL2MAP (as is done in the on-line POL2 tutorial), or if you do not set a value for the BINSIZE parameter, then all the values in the vector catalogue will be correct.

This bug has now been fixed and so it is safe to use the 3-step process with a large BINSIZE if you rsync starlink from EAO on 31st October or later. But existing vector catalogues created previously using  the 3-step process with a large BINSIZE should be treated with caution. As noted above, the I and P values in such catalogues could be badly wrong, but the ANG values will be correct. It may be advisable to re-create such catalogues using the new software and compare the old and new catalogues for differences. Note, since the I values may have changed, any vector selection criteria based on the I value or SNR may be affected.

Details: When the POL2MAP script needs to create an I, Q or U coadd map, it will re-use any previously created coadd if such a coadd exists with the correct name. This is what happens in the typical 3-step processing mode: step 3 re-uses the externally masked I coadd created at step 2. If the requested vector catalogue bin size (parameter BINSIZE) is set to a value larger than the map pixel size (parameter PIXSIZE), then the coadd maps are first binned up to the requested bin size before creating the catalogue. However, the bug described in this post resulted in this binning stage being skipped for any coadd that was created by a previous run of POL2MAP. So in a typical 3-step process (with BINSIZE set to, say, 12 arc-seconds) the Q and U coadds were correctly binned up to a pixel size of 12 arc-seconds at step 3 prior to creating the catalogue, but the pre-existing I coadd (created at step 2 with 4 arc-second pixels) was not binned up. This means that the I pixel value used to form each vector would come from the wrong point on the sky, resulting in both the I and the P (polarisation) value being wrong in the catalogue. Since the Q and U coadds are both created at the same time as the vector catalogue (i.e. in step 3) they would be binned correctly, and so the vector angles in the catalogue would be correct.

 

 

 

 

 

First Light with new JCMT receiver `Ū`ū

Congratulations to both ASIAA and JCMT staff! We achieved first light with our receiver `Ū`ū on Friday, October 4th, 2019. `Ū`ū is part of the Nāmakanui instrument and works at wavelengths around 1.2mm. Our first observation was taken of CRL2688, a bright sub-mm source between a red giant and planetary nebulae.

Nāmakanui has been offered to JCMT users for single dish observing, initially at 230GHz and later at 345GHz.`Ū`ū is a dual polarization 2-sideband receiver with up to 8GHz of bandwidth (less when using ACSIS). `Ū`ū will be much faster than Rx3Am (which was retired in June 2018) for similar observations. The JCMT Heterodyne Integration Time Calculator https://proposals.eaobservatory.org/jcmt/calculator/heterodyne/ has been updated for `Ū`ū observing.

 

-20191005

JCMT Rapid Turnaround Proposal Submissions Now Invited

JCMT Rapid Turnaround Proposal Submission Call Opens on October 1st, 2019

The East Asian Observatory is pleased to invite proposals requesting Rapid Turnaround (RT) time at the JCMT. All prospective PIs should review the JCMT eligibility requirements page prior to the preparation and submission of a proposal.

A new RT submission cycle shall begin at the start of every month and close at the start of the next month. Any proposals not yet submitted by this time will be treated as still in preparation, and can be submitted during a subsequent cycle for the same semester. RT requests are limited to a maximum of 8 hours for Band 1 – 4 time requests, but are unlimited for Band 5 time requests. The Observatory shall aim to complete successful RT proposals within six months of their formal approval, after which time they shall be removed from the observing queue (regardless of their level of completion).

All RT proposals submitted shall be peer-reviewed by the proposal creator (or designated co-author) of other proposals submitted during the same submission cycle. The proposal peer review deadlines shall normally be two weeks after the close of the regular end-of-month RT proposal submission deadlines.

By submitting an RT proposal, all proposing teams are committing themselves to providing ratings and brief written assessments of several other proposals submitted for this Call by the corresponding deadline. Any proposing team that fails to provide a full set of reviews for their assigned proposals by the corresponding review deadline shall have their own proposal removed from the review process.

The MSBs for all approved RT projects should be created as soon as possible after their corresponding monthly RT review period has completed, ideally before the end of the month following the proposal submission deadline.

For further details regarding RT proposals, please see the relevant Call for Proposals page here. Any further questions should be directed to helpdesk@eaobservatory.org.

New Hedwig users should select ‘Log in’ and create an account. A ‘Help’ facility is available in the upper right corner, and individual Help tags at many other places.

Event Horizon Telescope Collaboration Wins 2020 Breakthrough Prize in Fundamental Physics

On Thursday, September 5th, 2019, the Event Horizon Telescope Collaboration was announced the winner of the prestigious Breakthrough Prize in Fundamental Physics. The $3 million prize, also known as the “Oscars of Science”, will be shared equally with 347 scientists co-authoring any of the six papers published by EHT. JCMT staff feel truly honored to have contributed to the Event Horizon Telescope Consortium that captured the first ever image of the Black Hole, Pōwehi, and look forward to our next EHT observing run in Spring of 2020. Deputy Director of JCMT, Jessica Dempsey, will be donating her portion of the award to the A Hua He Inoa program committed to propelling Hawaiian language and traditions to the global astronomical stage.

 

Event Horizon Telescope Collaboration: Winner of the 2020 Breakthrough Prize in Fundamental Physics

We’re pleased to announce that this year's Breakthrough Prize in Fundamental Physics goes to the Event Horizon Telescope Collaboration. The prize recognizes the team's extraordinary achievement in producing the first photograph of the “shadow" of a black hole. The experiment involved hundreds of collaborators across 8 telescopes, 60 institutions and 20 countries. Tune in to the Breakthrough Prize ceremony on the National Geographic channel November 3. More at https://breakthroughprize.org/News/54.

Posted by Breakthrough on Thursday, September 5, 2019

 

-20190909

Call for Proposals 20A: PI and Large Programs

JCMT Call for Semester 20A PI Programs

The East Asian Observatory is happy to invite PI observing proposals for semester 20A at the JCMT. Proposal submission is via the JCMT proposal handling system, Hedwig. For full details, and for proposal submission, please see

https://proposals.eaobservatory.org/

The 20A Call for PI Proposals closes on the 16th of September, 2019. The Hedwig system permits the submission (and repeated re-submission) of proposals until this deadline.

If this is your first time using Hedwig, you should ‘Log in’ and generate an account. There is a Hedwig ‘Help’ facility at the upper right corner of each page, and individual Help tags in many other places. Note that from this semester onward, Hedwig also allows a user to create copies of their preexisting proposals, in order to simplify the process of proposal re-submission.

JCMT Call for Large Programs (III)

The East Asian Observatory is also happy to invite applications for the third Call for JCMT Large Programs. At this time, 4,800 hours will be available for Large Programs up until the end of the 22B semester. Submissions will be accepted until the September 16th deadline. Please see here for more details. The proposal handling system, Hedwig, is available here.

For further details regarding current or previous Calls for Proposals, please see the proposal web pages.

Please contact us at helpdesk@eaobservatory.org if you have remaining questions about either of the above Calls for Proposals.

– 20190815

JCMT resumes night time operations

Dear JCMT Community,

We are pleased to announce that we have resumed night time operations at the JCMT. Our first night on sky way Sunday August 11th where we did a functional check out of our systems, took some engineering observations, followed by observations for the Large Program Queue. Our beloved Jim Hoge was the telescope operator in charge and was very happy to be back collecting precious scientific data. Currently we are limited to SCUBA-2 observing only whilst HARP undergoes engineering work. We hope to have it back on sky in September.

We would like to say a big thank you to our JCMT community for their support, patience and understanding. As always the safety of everyone on the mountain is of paramount importance to us.

 

New IP models for POL2 data

Summary:

New IP models are now available when reducing POL2 data. At 450 um the new model is a distinct improvement over the previous model. At 850 um the new and old models show little difference. To use the new models, it is necessary to add ipmodel=AUG2019 to the configuration when running pol2map:

% pol2map config='ipmodel=AUG2019'

Details:

Some POL2 users have seen evidence of significant inaccuracy in the model used to correct 450 um data for Instrumental Polarisation (IP). For instance, this can be seen in the following plots, which compare Q maps for DR21, created from observations taken in 2015 and 2017. The bottom left image shows the 450 um Q map from 2017 data, the bottom centre image shows the 450 um Q map from 2015 data and the  bottom right image shows the difference.  All these images use the same scaling. The difference appears to be a scaled version of the total intensity image (shown at top right), as confirmed by the scatter plot shown in the top centre.

The fact that the difference between the 2015 and 2017 Q maps looks like a scaled version of the total intensity map suggests strongly that the difference is caused by an inaccuracy in the IP correction (the IP correction subtracts a fraction of the total intensity map from the Q and U maps).

The current model used for IP correction is based on a set of observations of a bright unpolarised point source (Uranus). However, the high noise and low Q/U levels at 450 um in these Uranus observations makes it difficult to determine the model accurately. So a procedure has been developed that allows the IP model to be determined instead from a set of observations of any bright extended (possibly polarised) sources. This procedure has been applied to existing observations of OMC1/OrionA, DR21 and G034.257+0.155 to determine new IP models at both 850 um and 450 um. Observations of OrionB and Serpens main field2 were also used, but failed to produce any usable data at 450 um.

The new procedure is described in detail in the attached file.

Using the new 450 um IP model, there seems to be no significant difference between the Q/U maps made from the 2015 data and the 2017 data for DR21, as shown below:

and for completeness the corresponding U maps are shown below – again there is no significant difference between 2015 and 2017:

Nāmakanui Has Arrived in Hilo!

Nāmakanui (pronounced “Naaah-mah-kah-noo-ee”), our newest addition to the JCMT instrumentation suite, arrived in Hilo last week and is now out of the box and being tested in Hilo by staff. The Hawaiian name “Nāmakanui” means “Big-Eyes” and it refers to a type of fish found in and around the islands.

When it is fully commissioned, Nāmakanui will be able to look at the sky using one of three receivers. Each receiver carries the name of a different type of Nāmakanui fish: `Ala`ihi (pronounced “ah-la-ee-hee”; 86 GHz), `U`u (pronounced “oo-oo”; 230 GHz), and `Āweoweo (pronounced “aaah-vay-oh-vay-oh”; 345 GHz). `U`u is the first receiver that will be commissioned.

This instrument will be critical for helping take the next Pōwehi image (the Hawaiian name for the Black Hole image at the centre of M87), hooking into the Event Horizon Telescope network. Additionally, it will be capable of delivering a wide range of fantastic science from studying the earliest stages of star formation and the late stages of stellar mass loss to investigating the gas dynamics of galaxies.  It takes 12 hours to cool down Nāmakanui to its operational temperature (4K) and so far the testing is going very well!

This instrument was built by a team at ASIAA (Taiwan) and is on loan the to the JCMT as a spare for the Greenland Telescope. We are very grateful for the opportunity to collect exciting data with this next-generation instrument!
To learn more about this instrument click here: https://buff.ly/2Zkv1lW

 

JCMT Operations Temporarily Suspended

Dear JCMT Community,

This week, the pending start of the construction of the Thirty Meter Telescope has sparked a protest which has blocked access to Maunakea for all traffic. Yesterday afternoon, the directors of the existing observatories made the joint decision to remove all personnel from their telescope facilities at the summit to guarantee the safety of their staff – the institutions’ top priority. Without guaranteed, reliable access to the telescopes, the Maunakea Observatories have suspended all summit activities (including remote operations) for the time being.

The safety of everyone on the mountain, MKO staff, law enforcement, and protestors is of paramount importance to us. We have voluntarily decided to remove our staff. This is not a decision we came to lightly, but want to emphasize the importance of safety for all staff and facilities.

We are truly grateful to the law enforcement offices who have been working around the clock to ensure the safety of everyone on Maunakea. The safety of our personnel – and of everyone on the mountain – remains our top priority.

We look forward to returning to normal operations as soon as the situation allows.

From the JCMT Team, Aloha and thank you for understanding.

Remote Operations

East Asian Observatory is excited to announce that JCMT will be moving to fully remote operation from November 1st, 2019. From that date forward, JCMT will not require visiting observers to staff observing runs at the telescope.

The close collaboration between our user community and the Observatory is one of the greatest strengths of the JCMT. EAO will continue to enhance this relationship in the new era of fully remote operations via visiting young student programs, online real-time access to nighttime observing, and a range of other initiatives. We welcome your ideas and need your contributions to continue to produce the high impact science that we are all so proud of at JCMT. EAO welcomes short- and long-term visits to the Observatory to meet and collaborate with staff and learn about data reduction and analysis techniques. Astronomers wanting to work with our upcoming new instrument suite or utilize complex observing modes (e.g. VLBI) will also be encouraged to visit the JCMT to assist with commissioning efforts to ensure high quality science is produced.

In addition to welcoming visiting astronomers, the EAO will continue to host the JCMT Users Meeting yearly (this year in Taiwan) and will continue to send observatory staff to our regions when requested for workshops.

Remote operation is not a new concept for the JCMT, having been done in the past on occasion, and routinely via Extended Observing shifts since 2013/2014 (for more see the January 2014 Newsletter). Progress towards fully remote observing has been moving at an excellent pace. The observatory’s engineering team has been working hard this summer to overhaul and upgrade JCMT systems – including an overhaul of the roof and door hydraulics – and this work is on schedule to be complete well in advance of our planned switchover in November.

The Observatory appreciates your support and understanding as we advance into to this exciting new era for JCMT science. If you have any questions or concerns, please email our helpdesk@eaobservatory.org.

Image Credit: William Montgomerie

As a reminder, to get up-to-date information about the JCMT please send an e-mail to jcmt_users+subscribe@eaobservatory.org.

Controlling the masks used by pol2map

The map-making process used by the pol2map command uses two masks, each of which divides the field up into source and background regions:

  • The ‘AST’ mask: this is used to define the background regions that are to be forced to zero after each iteration of the map-maker algorithm (except the last iteration). This form of masking helps prevent the growth of artificial large scale structures within the map. Any real astronomical signal present within the masked background regions will tend to be suppressed in the final map, so it is important that the AST mask correctly identifies regions of significant emission down to a low level.
  • The ‘PCA’ mask: this is used to define the source regions that are to be excluded from the Principal Component Analysis. This analysis is used to remove the correlated backgrounds in the bolometer time stream data. The time-stream data for astronomical sources are not correlated across bolometers, and so tend to disrupt the PCA. For this reason source regions are excluded from the analysis.

Two separate masks are used because experience has shown that disruption of the PCA is caused mainly by the brighter central source regions. Consequently, the source regions within the PCA mask can  be smaller than the source regions within the AST mask.

A total intensity map of DR 21 showing the AST mask in green and the slightly smaller PCA mask in blue.

Default masks are created automatically by pol2map in a manner specified by the MASK parameter.

  1. On ‘step 1’ of a typical POL2 data reduction, MASK is left at its default valuer of “Auto”, causing new masks to be generated automatically at the end of each iteration of the map-making algorithm. This ‘auto-masking’ process identifies an initial set of sources by thresholding the current map estimate at the SNR value specified by configuration parameter “xxx.ZERO_SNR”, where “xxx” is either “AST” or “PCA”, depending on which mask is being generated. Each of these initial source regions is then expanded to include adjoining pixels down to the SNR level specified by configuration parameter “xxx.ZERO_SNRLO”.
  2. On ‘step 2’ and ‘step 3’ of a typical POL2 data reduction, MASK is set to the coadd of all the total intensity maps created at step 1. The pol2map script first creates a pair of AST and PCA masks from the supplied coadded map and then uses these masks on all iterations of the map-making algorithm. The findclumps command in the Starlink CUPID package is used by pol2map to create the masks. The process used by findclumps is the same as describe above for step 1 – initial sources are defined by a fixed SNR threshold within the supplied coadd and these are then extended down to a lower SNR threshold. The pol2map command sets these threshold values to the values of the four configuration parameters listed above – “AST.ZERO_SNR”, “AST.ZERO_SNRLO”, “PCA.ZERO_SNR” and  “PCA.ZERO_SNRLO”.

These configuration parameter all default to the following values specified in the pol2map script:

AST.ZERO_SNR = 3 
AST.ZERO_SNRLO = 2 
PCA.ZERO_SNR = 5 
PCA.ZERO_SNRLO = 3

If you wish to investigate the effects of changing these values, you should supply new values using the CONFIG parameter of the pol2map command. For instance:

% more conf
ast.zero_snr = 2.5
ast.zero_snrlo = 1.5
% pol2map config=^conf

Any values not specified will retain the default value listed above.

Note, prior to 10th July 2019 the above method could only be used at step 1 (the supplied settings were ignored if supplied at step 2 or 3). Later versions of pol2map do not suffer from this problem – the supplied values are honoured at all steps.

Footnote – for completeness it should be mentioned that the  COM and FLT models are also masked, in addition to the AST and PCA models. At step 1 (the auto-masking stage) the masking of COM and FLT is controlled by a similar set of configuration parameters to AST or PCA, except that “XXX” becomes “COM” or “FLT”. At steps 2 and 3 (the external-masking stages), the COM and FLT models are masked using the PCA mask generated by findclumps, and so COM and FLT masking cannot be controlled independently  of the PCA mask.

New FITS Header indicating makemap convergence

David Berry recently added a new feature to SMURF’s makemap. There is now a FITS header in the output maps which will let you know if makemap successfully converged.

The new header is NCONTNCV – the Number of CONTiguous chunks that did Not ConVerge. This should be zero if everything went well. If you are reducing data yourself, you can also check the makemap output or the ORAC-DR log for more information.

You will have access to this feature if you are using an rsynced Starlink build from after the 19th of June 2019. Observations in the archive reduced from 19th June 2019 onwards should also have this FITS header present.

You can check the fitsheaders in the output file with the KAPPA commands fitslist or fitsval, or if you are downloading a reduced file from the archive in .FITS format you can use any of your favourite FITS header viewers.

Hawaiʻi Astronomer Wins Canadian Award

Hawai`i Astronomer Wins Canadian Award

Hawaiʻi attracts the world’s top talent in astronomy due to Maunakea being one of the leading sites to study the universe. Today, EAO/JCMT astronomer Dr. Alex Tetarenko was awarded the 2019 J. S. Plaskett Medal by the Canadian Astronomical Society (CASCA).

Dr. Tetarenko was awarded the medal for her doctoral thesis on the physics of relativistic jets in X-ray binaries, as revealed by radio, millimeter (mm), and sub-millimeter (sub-mm) observations. Dr. Tetarenko obtained her PhD at the University of Alberta, and is now a 2018 East Asian Observatory Fellow working in Hilo, Hawaiʻi.

Dr. Tetarenko was awarded the medal for her exceptional skills both as an observer and in her insightful physical interpretation of complex observational data. Specifically, she is a leading expert in mm/sub-mm observations of black hole X-ray binaries. Recently, the journal Nature published  Dr. Tetarenko’s paper on  the rapidly spinning black hole in the Galactic binary system V404 Cygni. Dr. Tetarenko and her team used the Very Long Baseline Array (part of which is located on Maunakea) to observe this stellar mass black hole eject rapidly rotating high-speed clouds of plasma (known as jets), which are thought to be driven by the effects of Einstein’s theory of general relativity.

Dr. Alex Tetarenko with the J.S. Plaskett Medal, Awarded by the Canadian Astronomical Society at the 2019 annual general meeting in Montreal, QC, Canada. Photo Credit: Steve Mairs

On being awarded the 2019 J. S. Plaskett Medal, Dr. Tetarenko said “I am honored and humbled by the award, and grateful to be included among the list of awesome Canadian astronomers who have come before me”. On living and working in Hawaiʻi, Dr. Tetarenko said “I absolutely love being based in Hawaiʻi. Not only is Hawaiʻi one of the foremost centres of astronomy in the world, where I have access to world class telescopes and all the support and resources I need for my research, but it is also a beautiful island with a rich culture, that provides a very welcome escape from harsh Canadian winters.

Media Contacts:

  • Alex Tetarenko
  • James Clerk Maxwell Telescope
  • 1-808-969-6519
  • a.tetarenko@eaobservatory.org

 

  • Jessica Dempsey
  • James Clerk Maxwell Telescope
  • 1-808-969-6512
  • j.dempsey@eaobservatory.org

Additional Links:

About East Asian Observatory/James Clerk Maxwell Telescope
The EAO (East Asian Observatory) is formed  by EACOA (East Asian Core Observatories Association) for the purpose of pursuing joint projects in astronomy within the East Asian region. The EAO is chartered as a non-profit Hawai`i corporation. Its first task is to assume the operation of the James Clerk Maxwell Submillimetre Telescope (JCMT) on the summit of Maunakea, Hawai`i. Pursuant to an agreement with the University of Hawai`i, the EAO also provides engineering and IT support to the UKIRT Observatory (UKIRT). The JCMT is run by the non-profit organization the East Asian Observatory.

 

Special Supplementary Call for South Korea-led Proposals – 19B

The East Asian Observatory invites JCMT observing proposals with Principal Investigators (PIs) affiliated with a South Korean institution only for a special 19B Supplementary Call for Proposals. Proposal submission is via the JCMT proposal handling system, Hedwig. For full details, and for proposal submission, please see here.

The proposal submission deadline for this Special 19B Supplementary Call for Proposals is July 8th, 2019.

This Call is using a new “Rapid Turnaround”-style peer-review format, in which all proposals submitted for this Call shall be peer-reviewed by the proposal creator (or designated co-author) of other proposals also submitted for this Call.

The proposal peer-review deadline for this Call is July 22nd, 2019.

If this is your first time using Hedwig, you should ‘Log in’ and generate an account. There is a Hedwig ‘Help’ facility at the upper right corner of each page, and individual Help tags in many other places.

Please contact us at helpdesk@eaobservatory.org if you have remaining questions.

– 20190215

Investigating the effects of uncertainties in the POL2 IP model

Vector maps created from POL2 data need to have the instrumental polarisation (IP) removed to be useful. Determining a good model for the IP has been a challenge, and not surprisingly the currently accepted model has somewhat uncertain parameter values.  These uncertainties in the IP model translate into uncertainties in the final vector maps in complicated ways that cannot easily be estimated analytically. However, a possibly approach to estimating the uncertainties in the vector map is to produce several vector maps using slightly different IP models and then look at the differences between the resulting maps.

The pol2map command provides two options for doing this:

  1. The level of IP – as a percentage if the incoming total intensity – removed by the IP model can be raised or lowered by a specified amount from its default value. To do this, use configuration parameter “ipoffset“. For instance, to create a vector map using an IP level that is 0.3% greater than the default, do:% cat conf
    ipoffset=0.3
    % pol2map config=^conf ...
  2. The IP removed by the IP model can be rotated by a specified angle from its default orientation. To do this, use configuration parameter “ipangoff“. For instance, to create a vector map using an IP at an angle of 0.5 degrees to its default angle, do:% cat conf
    ipangoff=0.5
    % pol2map config=^conf ...

The above changes should be applied when running pol2map to create the Q and U maps, together with the final vector catalogue (“step 3”).

Previous investigation of the IP model suggests that the above values for ipoffset and ipangoff (i.e. 0.3 % and 0.5 deg.) are reasonable estimates of the uncertainties in the IP model parameters. Rotating the IP by up to 0.5 degree should usually have little effect on the final map, so it is probably  reasonable to ignore ipangoff and concentrate on  the effects of changing ipoffset. A possibly strategy is to use pol2map (step 3) three times to generate three sets of Q and U maps, with corresponding vector catalogues, using ipoffset values of -0.3, 0 and +0.3. The visual differences between the vector maps should give a handle on the uncertainties caused by the IP model.

EAO Futures meeting – a stepping stone to White Papers

The EAO Sub-mm Futures meeting held last week in Nanjing was a great success. All talks from the meeting are provided on the meeting program pages.

At the meeting the JCMT observatory had two major announcements:

1) The Observatory is seeking White Papers in support of a new 850 micron camera

The observatory seeks community input in the form of scientific White Papers in support of a new 850 micron camera for the JCMT. More information regarding the white papers will be provided at the EAO Futures Discussion wiki. Specifically White papers will be sought for:

The observatory is also soliciting for additional White Papers in addition to the above. All White Papers are to be submitted (visit the EAO wiki for a comprehensive list that have already been proposed). Deadline June 30th. A detailed description of the specification for the new 850 micron camera can be found here.

2) Announcing the JCMT Call for Large Programs (III)

The East Asian Observatory is pleased to provide an announcement of the third Call for JCMT Large Programs. At this time 4,800 hours will be available for Large Programs up until the end of the 2022B semester. This information is being provided ahead of the opening of the 20A Call in order for current and new teams to pursue discussion and planning. Submissions will be accepted from August 15th up until the September 15th deadline. This will likely coincide with the 20A PI Call. Fore more details click here. To reach the proposal handling system, Hedwig, and submit a proposal click here:

https://proposals.eaobservatory.org/

For further details visit our proposal web pages.

Checking for convergence in pol2map log files

When processing POL2 data, it is important to know that the map-making algorithm converged correctly for all observations. This information is available in the pol2map log file, along with the rest of the makemap or skyloop output.  However, the log file can be very long and so finding the relevant information may  not be straight-forward, particularly if you are unfamiliar with the screen output usually created by makemap or skyloop.

To help with this, I have written a simple python script called pol2logcheck.py, which searches a specified pol2map log file for the relevant information and reports any observations that did not converge. Use it as in the following example:

% pol2logcheck.py omc1/pol2map.log.3

omc1/pol2map.log.3: 

 Looks like a step 1 log file
  The following observation(s) failed to converge:
    20190104 #14

Combining multiple POL2 fields

If you wish to combine POL2 observations for multiple overlapping fields, the best way to proceed is probably as follows (note, for this to work correctly you will need a Starlink build from 9th June 2019 or later):

    1.  Run “step 1” independently for each field. In other words, use pol2map to create an auto-masked total intensity map for each field. The following assumes that pol2map is run within directories called “field1″, field2”, etc, to create the auto-masked maps and the I/Q/U time-stream data for each field.
    2. Co-add the auto-masked total intensity maps for all fields. First create a text file holding the paths to the separate auto-masked total intensity maps, and then run pol2map as follows:
      % more infiles
      field1/iauto
      field2/iauto
      % pol2map in=^infiles iout=iauto_mosaic \
                qout=! uout=! multiobject=yes
      
      
    3. Run “step 2” and “step 3” for each field, using the mosaic created above as the mask field for all fields. For instance, for the first field:
      % cd field1
      % pol2map in=qudata/\* iout=iext qout=! \
                uout=! mapdir=maps mapvar=yes \
                skyloop=yes mask=../iauto_mosaic 
      % pol2map in=qudata/\* iout=! qout=qext \
                uout=uext mapdir=maps mapvar=yes \
                skyloop=yes mask=../iauto_mosaic \
                ipref=iext cat=mycat debias=yes

      Then do the same for field2, field3, etc. If preferred, steps 2 and 3 can be combined into a single invocation of pol2map:

      % cd field1
      % pol2map in=qudata/\* iout=iext qout=qext \
                uout=uext mapdir=maps mapvar=yes \
                skyloop=yes mask=../iauto_mosaic \
                ipref=iext cat=mycat debias=yes
    4. Co-add the external-masked I/Q/U maps for all fields and create a vector catalogue from the co-added maps. First create a text file holding the paths to the external-masked I/Q/U maps for all fields, and then run pol2map as follows:
      % more infiles
      field1/iext
      field1/qext
      field1/uext
      field2/iext
      field2/qext
      field2/uext
      % pol2map in=^infiles iout=iext_mosaic \
                qout=qext_mosaic uout=uext_mosaic \
                multiobject=yes cat=mycat_mosaic \
                debias=yes ipcor=no

Fix for skyloop convergence problem

A bug in the smurf:skyloop command has recently been found and fixed. This bug could cause negative or zero values to be included in the extinction  (“EXT”) model. This in turn could cause effectively random behaviour in the other models, resulting in very poor convergence and some spurious values being introduced into the final map (if convergence does eventually happen). This bug is triggered by one or more observations having some time slices for which no extinction values are available (indicated by the presence of the string ” EXT:” in the skyloop log file). If such holes in the extinction data extend over only a few time slices, skyloop interpolates across them using the extinction values on either side of the hole. However,  there was an error in this interpolation that led to the holes being filled with negative or zero values. This bug has now been fixed (as of 22nd May 2019).  This fix affects both direct use of skyloop and indirect use via the pol2map command.

David

Spinning Black Hole Sprays Light-speed Plasma Clouds into Space

An international team of astronomers, including Dr Alex Tetarenko, a researcher working at the East Asian Observatory in Hilo, Hawai’i, have discovered rapidly swinging jets coming from a black hole within our own Galaxy the Milky Way, almost 8,000 light-years from Earth. This black hole is much closer to us than Pōwehi, a black hole recently imaged with the Event Horizon Telescope, located around 56 million light-years away from Earth in another Galaxy.

Published today in the journal Nature, the research shows jets from V404 Cygni’s black hole behaving in a way never seen before on such short timescales.

The rapidly spinning black hole in V404 Cygni was observed to eject high-speed clouds of plasma, known as jets, travelling at close to the speed of light. These jets appeared to also be rapidly rotating, with multiple clouds of material ejected just minutes apart.

Lead author Associate Professor James Miller-Jones, from the Curtin University node of the International Centre for Radio Astronomy Research (ICRAR), said black holes are some of the most extreme objects in the Universe.

“This is one of the most extraordinary black hole systems I’ve ever come across,” Associate Professor Miller-Jones said. “Like many black holes, it’s feeding on a nearby star, pulling gas away from the star and forming a disk of material that encircles the black hole and spirals towards it under gravity”.

An artist’s impression of the binary system that includes the black hole V404 Cygni and a sun-like star that orbit one another. Credit: ICRAR.

“What’s different in V404 Cygni is that we think the disk of material and the black hole are misaligned. This appears to be causing the inner part of the disk to wobble like a spinning top and fire jets out in different directions as it changes orientation.”

V404 Cygni, located in the constellation of Cygnus, was first identified as a black hole in 1989 when it released a big outburst of jets and material.

Astronomers looking at archival photographic plates then found previous outbursts in observations from 1938 and 1956.

Associate Professor Miller-Jones said that when V404 Cygni experienced another very bright outburst in 2015, lasting for two weeks, telescopes around the world tuned in to study what was going on.

“Everybody jumped on the outburst with whatever telescopes they could throw at it. So we have this amazing observational coverage” he said.

When Associate Professor Miller-Jones and his team studied the black hole, they saw its jets behaving in a way never seen before.

Where jets are usually thought to shoot straight out from the poles of black holes, these jets were shooting out in different directions at different times.

And they were changing direction very quickly—over no more than a couple of hours.

An artist’s impression of the inner parts of the accretion disk around the black hole V404 Cygni. Credit: ICRAR.

Associate Professor Miller-Jones said the change in the movement of the jets was because of the accretion disk—the rotating disk of matter around a black hole.

He said V404 Cygni’s accretion disk is 10 million kilometres wide, 7 times the diameter of the Sun, and the inner few thousand kilometres was puffed up and wobbling during the bright outburst.

“The inner part of the accretion disk was precessing and effectively pulling the jets around with it. You can think of it like the wobble of a spinning top as it slows down—only in this case, the wobble is caused by Einstein’s theory of general relativity.” Associate Professor Miller-Jones said.

The research used observations from the Very Long Baseline Array, a continent-sized radio telescope made up of 10 dishes across the United States, from the Virgin Islands in the Caribbean to Maunakea, Hawai’i.

Co-author Alex Tetarenko—an East Asian Observatory Fellow working in Hilo Hawai`i, and a recent PhD graduate from the University of Alberta —said the speed the jets were changing direction meant the scientists had to use a very different approach to most radio observations.

Dr Alex Tetarenko outside of the James Clerk Maxwell Telescope Office in Hilo, Hawaiʻi. Credit: Alyssa Clark

“Typically, radio telescopes produce a single image from several hours of observation. But these jets were changing so fast that in a four-hour image we just saw a blur. It was like trying to take a picture of a waterfall with a one-second long exposure” Dr. Tetarenko said.

Observations taken by Dr. Tetarenko and her team with two more telescopes on Maunakea, Hawai`i, the James Clerk Maxwell Telescope (JCMT) and the Sub-millimeter Array (SMA), also hinted at a rapidly evolving jet. Previously published in the journal Monthly Notices of the Royal Astronomical Society, these observations tracking the brightness of the jet over time, revealed extreme flaring events that coincided with the directly imaged jet ejection events.

“The incredible changes in brightness we saw in this JCMT and SMA data, and the model we designed to explain these changes, provided key information needed to develop our imaging method for this paper” she said.

To directly image these rapidly changing jets, the researchers produced 103 individual images, each about 70 seconds long. Miller-Jones and Tetarenko then led the efforts to combine those images into a continuous video—a difficult task, as each image required its own careful analysis.

“The result has been well worth the effort, illustrating this unique and unusual black hole behaviour” Dr. Tetarenko said.

“We were gobsmacked by what we saw in this system—it was completely unexpected,” said study co-author Gregory Sivakoff, a University of Alberta astrophysicist.  “Finding this astronomical first has deepened our understanding of how matter behaves near black holes”.

Study co-author Dr Gemma Anderson, who is also based at ICRAR’s Curtin University node, said the wobble of the inner accretion disk could happen in other extreme events in the Universe too.

“Anytime you get a misalignment between the spin of black hole and the material falling in, you would expect to see this when a black hole starts feeding very rapidly,” Dr Anderson said.

“That could include a whole bunch of other bright, explosive events in the Universe, such as supermassive black holes feeding very quickly or tidal disruption events, when a black hole shreds a star.”

Narrated V404 Cygni Black Hole Animation from ICRAR on Vimeo.

An animation of the precessing jets and accretion flow in V404 Cygni narrated by Associate Professor James Miller-Jones of Curtin University and ICRAR. Zooming in from the high-speed plasma clouds observed with our radio telescope, we see the binary system itself. Mass from the star spirals in towards the black hole via an accretion disk, whose inner regions are puffed up by intense radiation. The spinning black hole pulls spacetime (the green gridlines) around with it, causing the inner disk to precess like a spinning top, redirecting the jets as it does so. Credit: ICRAR.

V404 Cygni Black Hole Jets Simulation from ICRAR on Vimeo.

High-speed plasma clouds ejected from V404 Cygni over a four-hour period on 22nd June, 2015. This movie is made directly from our high-resolution radio images taken with the National Science Foundationʻs Very Long Baseline Array. It shows clouds of plasma in the precessing jets moving away from the black hole in different directions. The scale of the images is approximately the size of our Solar System, and time is shown by the clock in the bottom right-hand corner. Credit: ICRAR and the University of Alberta.

Media Contacts:

  • James Clerk Maxwell Telescope
    • Alex Tetarenko
    • 1-808-969-6519
    • a.tetarenko at eaobservatory.org
  • James Clerk Maxwell Telescope
    • Jessica Dempsey
    • 1-808-969-6512
    • j.dempsey at eaobservatory.org

 

About East Asian Observatory/James Clerk Maxwell Telescope

The EAO (East Asian Observatory) is formed  by EACOA (East Asian Core Observatories Association) for the purpose of pursuing joint projects in astronomy within the East Asian region. The EAO is chartered as a non-profit Hawai`i corporation. Its first task is to assume the operation of the James Clerk Maxwell Submillimetre Telescope (JCMT) on the summit of Maunakea, Hawai`i. Pursuant to an agreement with the University of Hawai`i, the EAO also provides engineering and IT support to the UKIRT Observatory (UKIRT). The JCMT is run by the non-profit organization the East Asian Observatory.

A new dimmconfig that uses PCA

The $STARLINK_DIR/share/smurf directory includes several “dimmconfig” files that package up commonly used groups of configuration parameter values for use by the makemap command.  A new file called dimmconfig_pca.lis has recently been added, which can be combined with  other dimmconfig files to tell makemap to include a PCA model in its iterative algorithm (the PCA model removes noise signals that are correlated between multiple bolometer time-streams). For instance, to use a PCA model when creating a map of a bright extended source, you could run makemap as follows:

% more conf
^$STARLINK_DIR/share/smurf/dimmconfig_bright_extended.lis
^$STARLINK_DIR/share/smurf/dimmconfig_pca.lis
% makemap config=^conf

To process compact sources, change “bright_extended” above to “bright_compact“.

Using a PCA model can help to reduce the spurious extended structures that often appear in SCUBA-2 maps (although this benefit is bought at the cost of a much extended run time). For instance, below are four 850 um maps of DR 21 – the top row shows the maps made with the basic “bright extended” dimmconfig, and the bottom shows eh results of adding in the new PCA dimmconfig:

Below are the mosaics of the four observations, with the difference map shown in between:

As another example, the following panes show similar maps for three observations of the Serpens South field:

JCMT Plays Critical Role in Producing World’s First Image of a Black Hole – Pōwehi

MAUNAKEA, HAWAIʻI –– Two of the world’s most powerful telescopes, located atop Maunakea, played a vital role in producing the world’s very first image of a black hole. Hawai‘i-based James Clerk Maxwell Telescope (JCMT) and Submillimeter Array (SMA) are part of the unprecedented Event Horizon Telescope (EHT) project. JCMT is operated by the East Asian Observatory; SMA is operated by the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics.

In April 2017, a groundbreaking observational campaign brought together eight telescopes at six locations around the globe to capture an image of Pōwehi, a supermassive black hole at the center of the Messier 87 galaxy.

Pōwehi

Using the Event Horizon Telescope, scientists obtained an image of the black hole at the center of galaxy M87, outlined by emission from hot gas swirling around it under the influence of strong gravity near its event horizon.

“Maunakea makes this discovery and the spectacular image of Pōwehi possible,” said Dr. Jessica Dempsey, deputy director of East Asian Observatory’s James Clerk Maxwell Telescope. “It’s perfect remote position, and the dry conditions on Maunakea’s summit, allow JCMT and SMA to collect the tiny amount of light that only touches our planet in a few very special places. Like the mountain itself, every drop of light we gather is precious.”

Astronomers collaborated with renowned Hawaiian language and cultural practitioner Dr. Larry Kimura for the Hawaiian naming of the black hole. Pōwehi, meaning embellished dark source of unending creation, is a name sourced from the Kumulipo, the primordial chant describing the creation of the Hawaiian universe. Pō, profound dark source of unending creation, is a concept emphasized and repeated in the Kumulipo, while wehi, or wehiwehi, honored with embellishments, is one of many descriptions of pō in the chant.

“It is awesome that we, as Hawaiians today, are able to connect to an identity from long ago, as chanted in the 2,102 lines of the Kumulipo, and bring forward this precious inheritance for our lives today,” said Dr. Kimura, associate professor at University of Hawai‘i at Hilo Ka Haka ‘Ula o Ke‘elikolani College of Hawaiian Language. “To have the privilege of giving a Hawaiian name to the very first scientific confirmation of a black hole is very meaningful to me and my Hawaiian lineage that comes from pō, and I hope we are able to continue naming future blackholes from Hawai‘i astronomy according to the Kumulipo.”

Dr Jessica Dempsey, Dr Larry Kimura, Dr Geoff Bower discuss the results at the JCMT, in front of the 15m dish.

The SMA and JCMT telescopes are key members of the Event Horizon Telescope project, which links together strategically placed radio telescopes across the globe to form a larger, Earth-sized telescope powerful enough to see a Lehua flower petal on the moon.

“SMA and JCMT, working together as one ‘ohana, pioneered the revolutionary technique to see such tiny and faint objects and they were critical in capturing the image of Pōwehi,” said Geoff Bower, chief scientist for Hawai‘i operations of Academia Sinica Institute of Astronomy and Astrophysics. “The spirit of aloha required to unite scientists and observatories across the world was born right here on Maunakea. And powerful new capabilities coming soon at SMA and JCMT mean that Hawai‘i’s groundbreaking contributions to understanding our universe are just beginning.”

The participation of the SMA and JCMT as the far-west anchor point of EHT’s telescope array allowed astronomers to effectively observe and “photograph” supermassive black holes, among the most mysterious and powerful objects in the cosmos.

About James Clerk Maxwell Telescope
Operated by the East Asian Observatory, the James Clerk Maxwell Telescope (JCMT) is the largest astronomical telescope in the world designed specifically to operate in the submillimeter wavelength region of the spectrum. The JCMT has a diameter of 15 meters and is used to study our Solar System, interstellar and circumstellar dust and gas, and distant galaxies. It is situated near the summit of Maunakea, Hawai‘i, at an altitude of 4,092 meters.

The JCMT is operated by the East Asian Observatory on behalf of The National Astronomical Observatory of Japan; Academia Sinica Institute of Astronomy and Astrophysics, Taiwan; the Korea Astronomy and Space Science Institute; Center for Astronomical Mega-Science, China. Additional funding support is provided by the Science and Technology Facilities Council of the United Kingdom and participating universities in the United Kingdom and Canada. The East Asian Observatory also proudly partners with Vietnam, Thailand, Malaysia, Indonesia, and India. Click here for more information.

About Event Horizon Telescope

The EHT collaboration involves more than 200 researchers from Africa, Asia, Europe, North and South America. The international collaboration is working to capture the first-ever image of a black hole by creating a virtual Earth-sized telescope. Supported by considerable international investment, the EHT links existing telescopes using novel systems — creating a fundamentally new instrument with the highest angular resolving power that has yet been achieved.

The individual telescopes involved are; ALMA, APEX, the IRAM 30-meter Telescope, the IRAM NOEMA Observatory, the James Clerk Maxwell Telescope (JCMT), the Large Millimeter Telescope Alfonso Serrano (LMT), the Submillimeter Array (SMA), the Submillimeter Telescope (SMT), the South Pole Telescope (SPT), the Kitt Peak Telescope, and the Greenland Telescope (GLT).

The EHT collaboration consists of 13 stakeholder institutes; the Academia Sinica Institute of Astronomy and Astrophysics, the University of Arizona, the University of Chicago, the East Asian Observatory, Goethe-Universitaet Frankfurt, Institut de Radioastronomie Millimétrique, Large Millimeter Telescope, Max Planck Institute for Radio Astronomy, MIT Haystack Observatory, National Astronomical Observatory of Japan, Perimeter Institute for Theoretical Physics, Radboud University and the Smithsonian Astrophysical Observatory.

This research was presented in a series of six papers published today in a special issue of The Astrophysical Journal Letters.

More information on the Event Horizon Telescope can be found on the EHT website. For a copy of the Press release in `ōlelo Hawai’i click here.

MEDIA CONTACT:

Dylan Beesley, Director, Bennet Group Strategic Communications

dylan at bennetgroup.com

Dr Jessica Dempsey, Deputy Director

j.dempsey at eaobservatory.org

 

Reactions to the news

Selection of Media

Regional Press Releases (in local language)

Additional resources including animations

NSF Media Materials

 

 

Faster PCA

By default, the SMURF makemap command identifies and removes a single correlated background signal – called the common-mode – from all bolometer time-streams. However, in some cases there is clear evidence that there is more than one correlated background signal present in the bolometer time streams. This is particularly evident in POL2 data, where the varying instrumental polarisation causes different parts of the focal plane to see different levels of sky polarisation. For POL2, better maps are created if multiple correlated background signals are identified and removed . This is achieved within makemap using a process called Principal Component Analysis (PCA). The down side to using PCA is that it is very very slow – it is just about practical in the case of POL2 data because of the very low scan speed and consequent very low sample rate. 

A change introduced into SMURF on 1st April  2019 should speed up PCA by a factor of 2 or 3, making POL2 reductions quicker and maybe making PCA background removal practical for non-POL2 data. Maps created using the new PCA system will not be identical to maps made with the old system, but the differences should be well within the noise levels (the pixel variances remain largely unaffected).

To use PCA within a normal run of makemap it is recommended to add the following to your config file:

modelorder = (com,gai,pca,ext,flt,ast,noi) 
pca.pcathresh = -50

It is usually a good idea to mask out the source when calculating the PCA model on the first few iterations, since this seems to aid convergence. The same sort of mask should be used with PCA as is used with AST, but it should only be applied for a few iterations. So for instance for a point source you could add:

pca.zero_circle = 0.01667
pca.zero_niter = 2

This masks the PCA model on the first two iterations using a circle of radius 60 arc-seconds (0.01667 degrees).

Using PCA usually causes makemap to converge more slowly, but often produces maps with lower levels of artificial structures. If pca.pcathresh is negative, the absolute value indicates the number of correlated signals to remove as the background in each bolometer. Smaller numbers result in a lower level of noise reduction in the final map, but faster convergence. Larger numbers result in a higher level of noise reduction in the final map, but slower convergence. The default value is 50, which usually seems to be a reasonable compromise.

The left map below was made with a default common-mode background (no PCA)  and the centre map was made with PCA background removal as shown above. Each observation took about 6 minutes to create without PCA and about 25 minutes with the new faster PCA. The right map shows the difference between the other two maps. All three use the same scaling.

International Women’s Day 2019

The Women of Maunakea once again met to celebrate their achievements and seek more advancements at this years International Women’s Day event held on March 3rd at Imiloa Astronomy Centre, Hilo, Hawai`i.

At the event our organization introduced a new equality challenge for the entire astronomy community on Hawai‘i Island, pledging to support equality and diversity within their ranks. Jessica Dempsey, Deputy Director of EAO/JCMT stated that

“Living in one of the most diverse states in the country, host to the most female astronomers in the world, we are uniquely positioned to serve as a model of progress toward gender equity and diversity in the workplace”

Jessica seeks to get to gender parity within the ranks of the organization by 2024 .

The event has been followed with a number of social media posts by the Maunakea Observatories within Hawai`i in support of International Women’s Day 2019 held on March 8th (#IWD2019).

Big Island Now – Maunakea Observatories Launches Equity Challenge on International Women’s Day

Big Island Video News – International Women’s Day Mixer At Imiloa

Call for Proposals 19B

The East Asian Observatory is happy to invite PI observing proposals for semester 19B at the JCMT. Proposal submission is via the JCMT proposal handling system, Hedwig. For full details, and for proposal submission, please see

https://proposals.eaobservatory.org/

The 19B Call for Proposals closes on the 15th of March, 2019.

If this is your first time using Hedwig, you should ‘Log in’ and generate an account. There is a Hedwig ‘Help’ facility at the upper right corner of each page, and individual Help tags in many other places.

Please contact us at helpdesk@eaobservatory.org if you have remaining questions.

– 20190215

JCMT Transient Survey Team Observes Record-Breaking Flare

On November 26th, 2016, the JCMT Transient Survey Team observed what is estimated to be the most luminous known flare associated with a young stellar object. It is also the first coronal flare discovered at submillimetre wavelengths. The brief flash of light occurred in the direction of a binary system of forming stars known as “JW 566” in the Orion Nebula and it carried ten billion times the amount of energy of the solar flares observed around the Sun.

Left: The Orion Nebula as seen by SCUBA-2 at 850 microns. Right: Two images of
the field surrounded by the green square taken 6 days apart. Small rectangles/triangles show the
positions of known young stars found by other telescopes. On November 20th, 2016, there was
no signal. On November 26th, 2016, the flare was observed while it was already dimming from
its (unseen) maximum brightness.

The flare was discovered by JCMT support astronomer Dr. Steve Mairs using advanced image analysis techniques that had been developed by the Transient Survey team over the past 2 years. The SCUBA-2 observations lasted approximately 30 minutes over which time  the flare faded to half of the brightness measured at the beginning of the scan, indicating the event was short-lived. The flare is thought to be caused by an intense magnetic field re-connection event that energised charged particles to emit gyrosynchrotron/synchrotron radiation.

Press Release: Sky and Telescope, Hawai’i Tribune Herald, Big Island News

Publication: ArXiv, ApJ

The JCMT Transient Survey Team

The JCMT Transient Survey team is an international collaboration of 80 astronomers led by Dr. Gregory Herczeg of Peking (Kavli Institute for Astronomy and Astrophysics) and Dr. Doug Johnstone (National Research Council of Canada). The team has been monitoring 8 star-forming regions in the Milky Way with a monthly cadence since December, 2015. The survey will continue through January, 2020.

The Brightest Quasar in the Early Universe

Observations obtained by the JCMT helped uncover the Brightest Quasar in the Early Universe!

The light from Quasar J043947.08+163415.7 is gravitationally lensed by a dim Galaxy in the foreground, allowing Fan et al. (2019, APJL: 870, 11) to get a good look at this active galactic nucleus at a redshift of z = 6.51 (A distance of ~12.8 Billion Light years!). As the authors note, “This is the first such object detected at the epoch of reionization, and the brightest quasar yet known at z > 5”.

The JCMT is instrumental in observing distant star-forming galaxies. These galaxies have high concentrations of dust that reprocess the starlight such that it is emitted at infrared wavelengths. The light is then redshifted due to the expansion of the universe into the submillimetre regime. The star formation rate is estimated to be 10,000 times higher than that of our own Galaxy, the Milky Way.

Press Release:

Astronomers uncover the brightest quasar in the early universe

Publication:

The Discovery of a Gravitationally Lensed Quasar at z = 6.51


An artist’s rendering of a distance quasar (Credit: ESO/M. Kornmesserhttp://www.eso.org/public/images/eso1122a/)

A bit of history…

The name “Quasar” is a shortened version of the original designation scientists gave to a mysterious signal we didn’t have a scientific interpretation for: a “quasi-stellar radio source” discovered in 1963 by Maarten Schmidt.

Over decades of intensive studies, astronomers have been able to determine that these mysterious signals were coming from intense bursts of light in the hearts of galaxies far, far away.

Most (maybe all!) galaxies contain a supermassive black hole millions to billions times the mass of our Sun. In some of these galaxies, infalling material gets too close to the black hole and it heats up to millions of degrees, exploding outward in a massive release of energy!

We can detect those signals, which we now affectionately call Quasars, at submillimetre wavelengths with the JCMT.

Congratulations to Dr. Xiaohui Fan and his co-authors !

Combining POL2 observations with different reference positions

A bug has recently been fixed in the SMURF pol2map command  that could cause the maps created by pol2map to be blurred or show bad negative bowling around bright sources if the input observations do not all use the same reference point. So if you are using pol2map to combine data from POL2 observations with different reference positions, then you should ensure that you are using a version of starlink that includes the bug fix – i.e. was created on or after 10th January 2019. To check this, do:

% more $STARLINK_DIR/manifests/starlink.version

This will show details about your starlink build, including the date. To update it using rsync from Hilo, see these instructions.

The bug caused the pointing corrections determined at “step 1” to be in error by an amount roughly equal to the change in reference position between observations. These bad pointing corrections in turn lead to various problems (bad bowling or blurring) in the maps created at “step 2”. Consequently, it is not possible to correct an existing bad reduction – the only option is to do the whole reduction again from the start (having first ensured that your starlink installation is up to date).