Special Supplementary Call for Canada-led Proposals (21A)

PLEASE NOTE THAT THIS CALL FOR PROPOSALS HAS NOW CLOSED.

 

The East Asian Observatory is pleased to invite JCMT observing proposals with Principal Investigators (PIs) affiliated with Canadian institutions only for a special 21A Supplementary Call for Proposals. Proposal submission is via the JCMT proposal handling system, Hedwig. For full details, and for proposal submission, please see here.

The proposal submission deadline for this Special 21A Supplementary Call for Proposals is 2020-10-29 22:00 UTC.

This Call offers time for two Canadian JCMT user communities:

  1. A Canadian JCMT Consortium, consisting of the following institutions: McMaster University, Queen’s University, University of Alberta, University of Manitoba, University of Montreal;
  2. All Canada-based institutions, including those listed above.

Proposals with PIs from the first above group are eligible for any of the available Canadian JCMT time available in semester 21A. Proposals with PIs from all other Canadian institutions are eligible to apply for the fraction of the Canadian JCMT time available in 21A that is funded at the national level (by ACURA and NRC-HAA).

If this is your first time using Hedwig, you should ‘Log in’ and generate an account. There is a Hedwig ‘Help’ facility at the upper right corner of each page, and individual Help tags in many other places.

Please contact us at helpdesk@eaobservatory.org if you have remaining questions.

Special Supplementary Call for South Korea-led Proposals (21A)

PLEASE NOTE THAT THIS CALL FOR PROPOSALS HAS NOW CLOSED.

 

The East Asian Observatory invites JCMT observing proposals with Principal Investigators (PIs) affiliated with a South Korean institution only for a special 21A Supplementary Call for Proposals. Proposal submission is via the JCMT proposal handling system, Hedwig. For full details, and for proposal submission, please see here.

The proposal submission deadline for this Special 21A Supplementary Call for Proposals is 2020-11-19 22:00 UTC.

If this is your first time using Hedwig, you should ‘Log in’ and generate an account. There is a Hedwig ‘Help’ facility at the upper right corner of each page, and individual Help tags in many other places.

Please contact us at helpdesk@eaobservatory.org if you have remaining questions.

Pōwehi: New research captures a decade of movement

MAUNAKEA, HAWAIʻI – New analysis of data taken between 2009-2013, some of them not published before, by the James Clerk Maxwell Telescope (JCMT) and the Submillimeter Array (SMA) for the Event Horizon Telescope (EHT) collaboration have revealed the how the black hole Pōwehi is moving over decadal timescales. The analysis reveals the persistence of the crescent-like shadow feature, but also variation of its orientationthe crescent-like shadow appears to be wobbling.  Published today in The Astrophysical Journal, the new result is possible due to scientific advances made by the Maunakea-based telescopes and EHT’s groundbreaking black hole photo in 2019.

The gas falling onto a black hole heats up to billions of degrees, ionizes and becomes turbulent in the presence of magnetic fields. This turbulence is what causes the appearance of black holes to vary over time. Modeling prior data with improved techniques revealed that Pōwehi’s shadow was moving from 2009-2013 and has continued to do so ever since. “The most important thing that we have learned is that the shadow of Pōwehi is always there. That means it is real and is caused by the light bending from the black hole,” said Geoff Bower, Hilo resident and EHT Project Scientist at Academia Sinica Institute of Astronomy and Astrophysics (ASIAA). “The wobble tells us about how gas is flowing around the black hole, varying like clouds in the sky or waves on the ocean. What’s next is to use our improved array and make images over years to come and learn from those changes to answer questions like, ‘How does Pōwehi feed itself?’

Top: Snapshots of the Pōwehi (M87*) black hole obtained through imaging / geometric modeling. The diameter of all rings is similar, but the location of the bright side varies. Bottom: the EHT array of telescopes in 2009-2017. The JCMT and SMA in Hawai`i have continually provided the critical western baseline of the telescope array. Credit: M. Wielgus, D. Pesce & the EHT Collaboration.

Prior experiments were critical to learning more about the famed black hole. Relying on theory, scientists already believed that the shadow was changing over time, but the 2019 image alone provided just a week-long snapshot into its life, too short a time to see those changes or understand them. “This is a little bit like going back to old family photographs and seeing a child’s resemblance to their ancestors,” said Bower. “The more we learn in the future, the more interesting information we can extract from the past. Black holes change on time scales as short as hours and as long as billions of years, so we have a lot to learn.

Very Long Baseline Interferometry (VLBI)—the technique used to power EHT—collects signals from astronomical radio sources, like black holes, at multiple radio telescopes around the world and combines the data to create complete results. “Hawai`i telescopes were crucial to the success of early EHT experiments over the past decade that pioneered the development of VLBI at very short wavelengths,” said Simon Radford, Operations Director of SMA at the Smithsonian Astrophysical Observatory (SAO). “The early experiments required the development and refinement of specialized signal processing electronics, observing techniques, and data analysis methods, setting the stage for the later observations that revealed the image of Pōwehi.

The Maunakea team is already working on preparing for the next EHT observations of Pōwehi in 2021. At JCMT in Hawaii the work is focused on ensuring a new more sensitive instrument Nāmakanui (“Big Eyes”) is ready. This new instrument, Nāmakanui — is funded by ASIAA and named for a type of fish found in and around the islands. “It is rewarding for our Hawai`i staff to see the depth and breadth of new science being mined from a decade of observations,” said Jessica Dempsey, Deputy Director of the East Asian Observatory (EAO) and JCMT. “It’s like we started the sketch ten years ago, and now with new tools and experience, our science teams are going back and able to not just fill in the color in the image, but make that image come to life.

Supplemental information

The James Clerk Maxwell Telescope

With a diameter of 15m (50 feet) the James Clerk Maxwell Telescope (JCMT) is the largest single dish astronomical telescope in the world designed specifically to operate in the submillimetre wavelength region of the electromagnetic spectrum. The JCMT is used to study our Solar System, interstellar and circumstellar dust and gas, evolved stars, and distant galaxies. It is situated in the science reserve of Maunakea, Hawai`i, at an altitude of 4092m (13,425 feet).

The JCMT is operated by the East Asian Observatory on behalf of CAMS (NAOC, PMO, and SHAO); NAOJ; ASIAA; KASI; as well as the National Key R&D Program of China. Additional funding support is provided by the STFC and participating universities in the UK and Canada.

Nāmakanui was constructed and funded by ASIAA, with funding for the mixers provided by ASIAA and at 230GHz by EAO. The Nāmakanui instrument is a backup receiver for the GLT.

The Event Horizon Telescope

The international collaboration of the Event Horizon Telescope announced the first-ever image of a black hole at the heart of the radio galaxy Messier 87 on April 10, 2019 by creating a virtual Earth-sized telescope. Supported by considerable international investment, the EHT links existing telescopes using novel systems — creating a new instrument with the highest angular resolving power that has yet been achieved.

The individual telescopes involved in the EHT collaboration are: the Atacama Large Millimeter/submillimeter Array (ALMA), the Atacama Pathfinder EXplorer (APEX), the Greenland Telescope (since 2018), the IRAM 30-meter Telescope, the IRAM NOEMA Observatory (expected 2021), the Kitt Peak Telescope (expected 2021), the James Clerk Maxwell Telescope (JCMT), the Large Millimeter Telescope (LMT), the Submillimeter Array (SMA), the Submillimeter Telescope (SMT), and the South Pole Telescope (SPT).

The EHT consortium consists of 13 stakeholder institutes; the Academia Sinica Institute of Astronomy and Astrophysics, the University of Arizona, the University of Chicago, the East Asian Observatory, the Harvard-Smithsonian Center for Astrophysics, the Goethe- Universität Frankfurt, the Institut de Radioastronomie Millimétrique, the Large Millimeter Telescope, the Max-Planck-Institut für Radioastronomie, the MIT Haystack Observatory, the National Astronomical Observatory of Japan, the Perimeter Institute for Theoretical Physics, and the Radboud University.

Pōwehi

Astronomers collaborated with renowned Hawaiian language and cultural practitioner Dr. Larry Kimura for the Hawaiian naming of the supermassive black hole at the centre of the galaxy M87. Pōwehi, meaning embellished dark source of unending creation, is a name sourced from the Kumulipo, the primordial chant describing the creation of the Hawaiian universe. Pō, profound dark source of unending creation, is a concept emphasized and repeated in the Kumulipo, while wehi, or wehiwehi, honored with embellishments, is one of many descriptions of pō in the chant. Dr. Kimura is an associate professor at University of Hawai‘i at Hilo Ka Haka ‘Ula o Ke‘elikolani College of Hawaiian Language.

Media Contacts

Geoff Bower
Chief Scientist for Hawaii Operations, ASIAA
Project Scientist, Event Horizon Telescope
Affiliate Graduate Faculty, UH Manoa Physics and Astronomy
gbower@asiaa.sinica.edu.tw

Jessica Dempsey
Deputy Director of the East Asian Observatory (EAO) and JCMT
j.dempsey@eaobservatory.org

JCMT finds hints of life on Venus

An international team of astronomers, led by Professor Jane Greaves of Cardiff University, UK, today announced the discovery of a rare molecule – phosphine – in the clouds of Venus. On Earth, this gas is only made industrially, or by microbes that thrive in oxygen-free environments. The detection of phosphine could point to such extra-terrestrial “aerial” life. “When we got the first hints of phosphine in Venus’s spectrum, it was a shock!”, said Jane, who first spotted signs of phosphine in observations from the James Clerk Maxwell Telescope (JCMT) in Hawai`i.

Astronomers have speculated for decades that high clouds on Venus could offer a home for microbes – floating free of the scorching surface, with access to water and sunlight, but needing to tolerate very high acidity. The detection of phosphine, which consists of hydrogen and phosphorus, could point to this extra-terrestrial ‘aerial’ life. The new discovery is described in a paper published today in Nature Astronomy.

Artistic impression of Venus depicting a representation of phosphine molecule shown in the inset. The molecules were detected in the Venusian high clouds in data from the James Clerk Maxwell Telescope and the Atacama Large Millimeter/submillimeter Array. Astronomers have speculated for decades that life could exist in Venus’s high clouds. The detection of phosphine could point to such extra-terrestrial “aerial” life. Image credit: ESO/M. Kornmesser/L. Calçada & NASA/JPL/Caltech.

The first detection of phosphine in the clouds of Venus was made using the JCMT in Hawai`i. The team were then awarded time to follow up their discovery with 45 telescopes of the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile. Both facilities observed Venus at a wavelength of about 1 millimetre, much longer than the human eye can see – only telescopes at high altitude can detect it effectively. “In the end, we found that both observatories had seen the same thing — faint absorption at the right wavelength to be phosphine gas, where the molecules are backlit by the warmer clouds below” said Jane.

The astronomers then ran calculations to see if the phosphine could come from natural processes on Venus. Massachusetts Institute of Technology scientist Dr William Bains led the work on assessing natural ways to make phosphine. Some ideas included sunlight, minerals blown upwards from the surface, volcanoes, or lightning, but none of these could make anywhere near enough of it. Natural sources were found to make at most one ten thousandth of the amount of phosphine that the telescopes saw. In contrast the team found that in order to create the observed quantity of phosphine on Venus, terrestrial organisms would only need to work at about 10% of their maximum productivity. Any microbes on Venus will though likely be very different to their Earth cousins. Earth bacteria can absorb phosphate minerals, add hydrogen, and ultimately expel phosphine gas.

Team member and MIT researcher, Dr Clara Sousa Silva, had thought about searching for phosphine as a ‘biosignature’ gas of non-oxygen-using life on planets around other stars, because normal chemistry makes so little of it. She comments “Finding phosphine on Venus was an unexpected bonus! The discovery raises many questions, such as how any organisms could survive. On Earth, some microbes can cope with up to about 5% of acid in their environment – but the clouds of Venus are almost entirely made of acid.

The team believes this discovery is significant because they can rule out many alternative ways to make phosphine, but they acknowledge that confirming the presence of “life” needs a lot more work. Although the high clouds of Venus have temperatures up to a pleasant 30 degrees centigrade, they are incredibly acidic – around 90% sulphuric acid – posing major issues for microbes to survive there. Prof Sara Seager and Dr Janusz Petkowski, both at MIT, are investigating how microbes could shield themselves inside scarce water droplets.

The team are now eagerly awaiting more telescope time to establish whether the phosphine is in a relatively temperate part of the clouds, and to look for other gases associated with life. This result also has implications in the search for life outside our Solar system.

On hearing the results of the JCMT study, the JCMT’s Deputy Director Dr Jessica Dempsey said “These results are incredible” and went on to say “this discovery made in Hawai`i, by the JCMT, was made with a single pixel instrument. This is the very same instrument that also took part in capturing the first image of a Black Hole, Pōwehi. The discovery of phosphine in the atmosphere of Venus really showcases the breadth of cutting-edge research undertaken by astronomers using the JCMT. I am so pleased of the efforts from all our staff here in Hawai`i

JCMT, seen with its white iconic Gore-Tex membrane, open for morning observing. The shadow of Maunakea rises over Hualālai in the distance. JCMT is able to observe during the daytime as it operates at sub-millimeter wavelengths. Image credit: Tom Kerr, UKIRT.

Former UH Hilo astronomy student, E’Lisa Lee who took some of the JCMT data during her time working as a part-time JCMT telescope operator summed up her feelings “An observed biochemical process occurring on anything other than Earth has the greatest and most profound implications for our understanding of life on Earth, and life as a concept.” Adding “Being able to participate in the scientific process, as an operator at JCMT was an incredible and humbling experience. It is my sincerest hope that further observations will allow for greater exploration of Venusian clouds and everything beyond.” E’Lisa currently studying for her Master’s degree in physics at Fresno State University.

The JCMT instrument that captured this phosphine discovery has since retired and been replaced by a new and more sensitive instrument known as Nāmakanui. On the potential of this new instrument, Jessica commented “Like it’s namesake, the big-eyed fish hunting food in the dark waters, we will turn the far more sensitive Nāmakanui back to Venus in this hunt for life in our universe.  This is just the beginning, and I’ve never been more excited to be a part of our boundary-pushing JCMT team.”

JCMT Deputy Director, Jessica Dempsey stands beside the now retired instrument, RxA3m, that made this first detection of phosphine on Venus. The instrument has since been replaced by a more powerful instrument called Nāmakanui. Image Credit: Harriet Parsons.

Supplemental Information

This research was presented in the paper “Phosphine Gas in the Cloud Decks of Venus” published in Nature Astronomy. A copy of the paper will be available with free access from www.nature.com/articles/s41550-020-1174-4. Further information and resources can be found at: maunakeaobservatories.org/venusnews/

Video assets and additional information available on the Maunakea Observatories website.

Previous papers discussing the nature of phosphine and life on Venus:

The team is composed of: Jane S. Greaves (Cardiff University, UK), Anita M. S. Richards (Jodrell Bank Centre for Astrophysics, The University of Manchester, UK), William Bains (MIT, USA), Paul Rimmer (Department of Earth Sciences and Cavendish Astrophysics, University of Cambridge and MRC Laboratory of Molecular Biology, Cambridge, UK), Hideo Sagawa (Kyoto Sangyo University, Japan), David L. Clements (Imperial College London, UK), Sara Seager (MIT, USA), Janusz J. Petkowski (MIT, USA), Clara Sousa-Silva (MIT), Sukrit Ranjan (MIT), Emily Drabek-Maunder (Cardiff and Royal Observatory Greenwich, UK), Helen J. Fraser (The Open University, UK), Annabel Cartwright (Cardiff University, UK), Ingo Mueller-Wodarg (Imperial College, UK), Zhuchang Zhan (MIT, USA), Per Friberg (EAO/JCMT), Iain Coulson (EAO/JCMT), E’Lisa Lee (EAO/JCMT) and Jim Hoge (EAO/JCMT).

The authors of the paper. Find more of the discussion on social media by following the #VenusNews

`Ōlelo Hawai`i

A copy on the Press Release in `ōlelo Hawai`i is provided here.

Makaola

Dr. Larry Kimura, Associate Professor University of Hawaii, Hilo in the Ka Haka ʻUla O Keʻelikōlani, College of Hawaiian Language was asked to provide assistance with the translation of the news of the detection of phosphine into `ōlelo Hawai`i. The translatio required Dr Kimura to create a new word to describe the possibility of the detection of life. In the process Makaola – a detection of life – was formed.

Maka is the basic word for “eye” and in Hawaiian the nuances or other meanings go on; kūmaka-visible, seen; makaʻala-alert, watchful; makamua-the very first; etc.  Also as used in the Kumulipo when we see “maka liʻi” or tiny eyes, those maka are tiny dots so other meanings for maka are a point of beginning, or like the tip of a pen or spear.  It is the word we use to mean to begin with the causative marker “hoʻo” or hoʻomaka. Ola is the word for life, alive, living, and support.

JCMT – The James Clerk Maxwell Telescope

With a diameter of 15m (50 feet) the James Clerk Maxwell Telescope (JCMT) is the largest single dish astronomical telescope in the world designed specifically to operate in the submillimetre wavelength region of the electromagnetic spectrum. The JCMT is used to study our Solar System, interstellar and circumstellar dust and gas, evolved stars, and distant galaxies. It is situated in the science reserve of Maunakea, Hawai`i, at an altitude of 4092m (13,425 feet).

The JCMT is operated by the East Asian Observatory on behalf of CAMS (NAOC, PMO, and SHAO); NAOJ; ASIAA; KASI; as well as the National Key R&D Program of China. Additional funding support is provided by the STFC and participating universities in the UK and Canada​.

Nāmakanui was constructed and funded by ASIAA, with funding for the mixers provided by ASIAA and at 230GHz by EAO. The Nāmakanui instrument is a backup receiver for the GLT.

ALMA – The Atacama Large Millimeter/submillimeter Array

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Southern Observatory (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science Council (NSC) and by NINS in cooperation with the Academia Sinica (AS) and the Korea Astronomy and Space Science Institute (KASI). ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

Media Contact

Dr. Jessica Dempsey
James Clerk Maxwell Telescope, East Asian Observatory
Email: j.dempsey@eaobservatory.org

Dr Jane Greaves
Cardiff University
Email: GreavesJ1@cardiff.ac.uk

Call for Proposals 21A

PLEASE NOTE THAT THIS CALL FOR PROPOSALS HAS NOW CLOSED.

https://proposals.eaobservatory.org/

The 21A Call for Proposals closes on the 16th of September, 2020.

If this is your first time using Hedwig, you should ‘Log in’ and generate an account. There is a Hedwig ‘Help’ facility at the upper right corner of each page, and individual Help tags in many other places.

Please contact us at helpdesk@eaobservatory.org if you have remaining questions.

JCMT survey reveals “treasure map” for star formation

The JCMT SCOPE Survey has provided astronomers studying the formation of stars a treasure map for follow up observations by the Nobeyama 45-m radio telescope and ALMA to reveal the treasures within. Two such treasures include an image of a multiple star system on the cusp of formation alongside a rare glimpse of a baby star heating up its surrounding material making its womb glow like a pair of eyes. These results were published in a number of papers produced this week in the Astrophysical Journal. 

Dr. Tie Liu, Shanghai astronomer – and until last summer – a visiting researcher in Hilo Hawai`i has been hunting baby stars for over a decade. He is the Principle Investigator of the JCMT SCOPE survey that observed over 3,500 sites where stars were believed to be on the cusp of formation within the Milky Way, these sites are known to be dense cores. The dense cores are “a treasure trove for astronomers investigating the very early phases of star formation” said Tie Liu when asked about the survey, noting that “It’s great that we have powerful tools such as ALMA but ALMA has such a small field of view you need a telescope like JCMT to know where to look!

Figure 1. Top: image of the JCMT with the Orion constellation highlighted (image credit William Montgomerie). Middle: N2H+ maps obtained with the Nobeyama telescope with 850 micon JCMT/SCUBA-2 contours overlaid. In the Middle image the team identified a number of dense cores. Bottom: The ALMA-Morita Array reveals two different substructures within each dense core. Bottom left: multiple stars are seen being formed in the early starless core phase (source G211). Bottom right: a mysterious pair of eyes appear to peer out from the disk around the newly forming star – these highlight rich chemistry occurring in the disk of this newly forming star (Results presented in Tatematsu et al. 2020).

Taking advantage of the JCMT treasure map of dense cores produced by the JCMT SCOPE team is an international research team lead by Gwanjeong Kim and Ken Tatematsu of the Nobeyama Radio Observatory (NRO), Japan. The team have observed over of the 200 dense cores, with the NRO 45-m radio telescope and the Morita Array, which is the East-Asian constructed part of the world’s most powerful radio telescope ALMA.

When discussing the chosen cores to observe with ALMA, Ken Tatematsu, director of NRO and the co-PI of the SCOPE project in Japan stated “We are able to locate exact places for near-future star formation, by using the fact that the deuterium percentage reaches its maximum just at the time of star formation”. Deuterium, which is a special kind of hydrogen, was carefully measured by the team in over 100 cores located in the Orion constellation,with the Nobeyama-45m radio Telescope.

The two rare finds discovered by the team are shown in Figure 1. An image of a multiple star system on the cusp of formation and a glimpse of a baby star heating up its surrounding material making its womb glow like a pair of eyes. Ken Tatematsu said  “what’s exciting is that in the pseudo-disk of the dense core G210, we see these two bright eyes staring back at us – this is the region around the baby star being heated and undergoing a chemical change. Usually such detail is hidden from view, but not anymore!

As to the question why this is such a great find, co-author on this work Tie Liu noted that “from the chemical models such examples as we have found should be quite common, but without the resolution we cannot see the structure. JCMT is the perfect telescope for finding such candidates but we do then need to draw on the power of a telescope such as ALMA”.

These results give us important clues to understand how stars start to form. Commenting on the future of this work Tie Liu said “We will do more systematic studies of these SCOPE dense cores with high resolution interferometric observations (e.g. ALMA), who knows what other treasures will be found”.This work has been published in the following three papers:

  1. Tatematsu et al. 2020 “ALMA ACA and Nobeyama Observations of Two Orion Cores in Deuterated Molecular Lines
  2. Kim et al. 2020 “Molecular Cloud Cores with High Deuterium Fraction: Nobeyama Single-Pointing Survey

Supplementary Information

With a diameter of 15m (50 feet) the James Clerk Maxwell Telescope (JCMT) is the largest astronomical telescope in the world designed specifically to operate in the submillimetre wavelength region of the electromagnetic spectrum. The JCMT is used to study our Solar System, interstellar and circumstellar dust and gas, evolved stars, and distant galaxies. It is situated in the science reserve of Maunakea, Hawai`i, at an altitude of 4092m (13,425 feet).

The JCMT is operated by the East Asian Observatory on behalf of NAOJ; ASIAA; KASI; CAMS as well as the National Key R&D Program of China. Additional funding support is provided by the STFC and participating universities in the UK and Canada​. Supplementary Information about SCUBA-2:

The James Clerk Maxwell Telescope (JCMT) observations were obtained using the “Submillimetre Common User Bolometer Array 2”, a specialized camera known by its acronym, SCUBA-2. SCUBA-2 consists of 10,000 superconducting Transition Edge Sensor (TES) bolometers that allow for simultaneous observations at wavelengths of 450 and 850 microns. Scientists regularly use SCUBA-2 to observe star-forming regions and other astronomical regions and phenomenon.

Supplementary Information about the JCMT SCOPE survey:

Contact Information:

Dr. Tie Liu
Shanghai Observatory
Email: liutie@shao.ac.cn

Dr. Harriet Parsons,
East Asian Observatory, JCMT
Email: h.parsons@eaobservatory.org

 

“Starspots” on Betelgeuse: JCMT Explains Star’s Record-Breaking Dimming

New data obtained using the Hawai`i-based James Clerk Maxwell Telescope (JCMT) revealed that the surface of Betelgeuse (commonly known as Orion’s shoulder), recently developed significant “Starspots” which caused an unprecedented dimming of the star. This result contrasts the previously accepted explanation that the reduction in brightness was due to a veil of newly created dust that obscured the star. The research was published today in the prestigious Astrophysical Journal Letters.

An artist’s rendering of Betelgeuse, Dr. Thavisha Dharmawardena from the Max Planck Institute for Astronomy, and Dr. Steve Mairs from the James Clerk Maxwell Telescope

Beginning in October, 2019, the Red Supergiant star, Betelgeuse, experienced a record-breaking dimming event where it became three times fainter than usual. This phenomenon captured the interest of both professional astronomers and the public, largely fuelled by curiosity in the red supergiant’s demise and whether this change in brightness was heralding an imminent supernova explosion. In an anti-climactic conclusion, however, the star eventually increased in brightness again to its regular appearance. The explanation that emerged at the time was that the dimming was caused by a newly formed cloud of dust that blocked some of the light before it reached our telescopes here on Earth. An independent study led by Dr. Thavisha Dharmawardena, postdoctoral researcher at the Max Planck Institute for Astronomy, Germany, and Dr. Steve Mairs, Senior Scientist at the James Clerk Maxwell Telescope, Hawai`i, USA, however, offers the more likely explanation that the surface of Betelgeuse itself underwent a significant change.

Like tuning to a different radio station in a car, telescopes are each tuned to observe different types of light. In this way, observations from different telescopes can be combined to help fill in the whole picture. “​By using the James Clerk Maxwell Telescope here in Hawai`i, we were able to collect a type of light called ‘submillimetre light’ that is not visible to the human eye,”​ Mairs explains, “​This provided the crucial information that allowed us to conclude that there was no dust in the way; Betelgeuse was feeling shy with a face full of spots.”​

An artist’s impression of the Red Supergiant Betelgeuse. Its surface is covered by large starspots, which reduce its brightness. During their pulsations, such stars regularly release gas into their surroundings, which condenses into dust. (Image: Graphics Department/MPIA).

New JCMT images were obtained in January, February, and March, 2020 while Betelgeuse was faint and they were compared with observations taken over the past 13 years. These previous observations include images obtained by the Atacama Pathfinder Experiment (APEX), a telescope in Chile that observes the same type of light as the JCMT. “​What surprised us was that Betelgeuse turned 20% darker during its dimming event even in submillimetre light,”​ Dharmawardena says “​This behaviour is not at all compatible with the presence of dust. It was very exciting to realise that the star itself had undergone this massive change​”.

According to the scientists, the simultaneous darkening in visible and submillimetre light is evidence for a reduction in the mean surface temperature of Betelgeuse by 200 °C (360 °F). ​“However, an asymmetric temperature distribution is more likely,”​ Dharmawardena explains, referring to corresponding high-resolution images of Betelgeuse from December 2019 that depict an uneven distribution of stellar brightness.​ “Together with our result, this is a clear indication of huge starspots covering between 50 and 70% of the visible surface, each having a lower temperature than the rest of the surface.”​ Starspots, similar to sunspots, are common in giant stars, but not on this scale. Not much is known about their lifetime. However, theoretical model calculations seem to be compatible with the duration of Betelgeuse’s dip in brightness.

The team will continue to track the brightness of Betelgeuse with the JCMT over the next year to uncover more details about how the star is physically changing over different timescales. ​“Previous generations of stars like Betelgeuse have physically manufactured most of the elements we find on Earth and indeed in our bodies, distributing them throughout the Galaxy in massive supernova explosions.”​ Mairs explains. ​“While we cannot predict when the star will explode, tracking its brightness will allow us not only to better understand the evolution of an interesting class of stars, but it also helps write a page in our own cosmic story.”

——-

Supplementary information about Betelgeuse:

Betelgeuse, known as Kauluakoko in `ōlelo Hawaii, is the nearest red supergiant star to the Earth at a distance of only 500 light years. It is the red shoulder of the constellation Orion. It is so large that if Betelgeuse were to be placed at the location of our Sun, Mercury, Venus, the Earth, Mars, and the asteroid belt, would all be contained inside the star. With such a close proximity, it acts as a unique laboratory to aid in the understanding of the late stages of red supergiant evolution. Massive stars (Betelgeuse is 11 times heavier than our Sun) are important to study as they are the main drivers of chemical evolution in the universe. Stars like Betelgeuse manufacture many of the elements that comprise our bodies and our planet and even before the explosive end of their lives, massive stars undergo episodes wherein they lose material, enriching their surroundings with newly formed chemical elements. These periods of mass loss are accompanied by pulsations with periods of up to a few years.

Supplementary Information about the JCMT:

With a diameter of 15m (50 feet) the James Clerk Maxwell Telescope (JCMT) is the largest astronomical telescope in the world designed specifically to operate in the submillimetre wavelength region of the electromagnetic spectrum. The JCMT is used to study our Solar System, interstellar and circumstellar dust and gas, evolved stars, and distant galaxies. It is situated in the science reserve of Maunakea, Hawai`i, at an altitude of 4092m (13,425 feet).

The JCMT is operated by the East Asian Observatory on behalf of NAOJ; ASIAA; KASI; CAMS as well as the National Key R&D Program of China. Additional funding support is provided by the STFC and participating universities in the UK and Canada​. Supplementary Information about SCUBA-2:

The James Clerk Maxwell Telescope (JCMT) observations were obtained using the “Submillimetre Common User Bolometer Array 2”, a specialised camera known by its acronym, SCUBA-2. SCUBA-2 consists of 10,000 superconducting Transition Edge Sensor (TES) bolometers that allow for simultaneous observations at wavelengths of 450 and 850 microns. Scientists regularly use SCUBA-2 to observe star-forming regions, Red Giant stars, and the most distant galaxies ever discovered. At an operating temperature of -459.5 degrees fahrenheit, SCUBA-2 at the JCMT is one of the coldest places in the known Universe.

Contact Information:

Dr. Thavisha Dharmawardena
Max Planck Institute for Astronomy
Email: ​dharmawardena@mpia.de

Dr. Steve Mairs
James Clerk Maxwell Telescope
East Asian Observatory
Email: ​s.mairs@eaobservatory.org

Dr. Jessica Dempsey
James Clerk Maxwell Telescope
East Asian Observatory
Email: ​j.dempsey@eaobservatory.org

New OMP and JCMOT log in system

The JCMT software team has been working hard to create a way for projects to be accessed by individual user log in rather than project wide shared log in/passwords. Going forward, to access programs in the OMP and JCMTOT  you will need to log in via  your Hedwig account.

PIs will be able to choose who has access on each project’s contacts page.  An advantage of the new system will be that you need only log in once to access all of your projects.

A helpful guide to these changes is provided in this OMP and OT access guide.

JCMT user are also reminded that a new version of the JCMT Observing Tool (JCMTOT) has been released.

 

Accessing the OMP:

 

The new JCMTOT and the JCMTOT log in window:

JCMT Telescope Operator Featured on CBS “Mission Unstoppable”

JCMT Telescope System Specialist Mimi Fuchs is on the front page of the Hawaii Tribune-Herald  today showcasing her appearance in an episode of “Mission Unstoppable” on CBS. As well as being an operator at the JCMT Mimi is an IF/THEN Ambassador for the AAAS – The American Association for the Advancement of Science.

Read the full Hawaii Tribune-Herald article here.

Watch the “Mission Unstoppable” segment here.

On sky operations to resume

After two months of hiatus in operations, we are pleased to announce that EAO will begin preparatory work to bring JCMT to on-sky operations. This decision comes after Hawaiʻi Governor David Ige identified the Observatories as part of the state’s list of low-risk organizations and businesses that are safe to reopen.

Recognizing the gravity of public health concerns over the global health pandemic and placing the safety of staff as paramount importance, the Observatory will continue to follow all health guidelines from state and local officials. The phased approach will include minimizing base facility activity and restricting summit work to only essential telescope operations, including critical maintenance of instrumentation and the facilities.

We will initiate operations in a limited on-site-staff mode, with most of our EAO staff continuing to work from home. We are putting into practice policies on hygiene and social distancing to ensure the safety of our staff and of our community here in Hawaii.

With safety our highest priority, we are nevertheless very happy to announce we will be returning to collecting the highest quality science to you, our JCMT user community. We thank you for your support during this time and ask that you keep engaging with us to help you bring your JCMT science to the world. The EAO `ohana continues to stay strong, healthy and optimistic, and we hope that you and your families continue to stay safe and well.

– with thanks, and on behalf of the entire EAO `ohana,

Jessica